BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33158094)

  • 1. Concentration-Emission Matrix (CEM) Spectroscopy Combined with GA-SVM: An Analytical Method to Recognize Oil Species in Marine.
    Chen Y; Yang R; Zhao N; Zhu W; Chen X; Zhang R; Liu J; Liu W
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33158094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil species identification technique developed by Gabor wavelet analysis and support vector machine based on concentration-synchronous-matrix-fluorescence spectroscopy.
    Wang C; Shi X; Li W; Wang L; Zhang J; Yang C; Wang Z
    Mar Pollut Bull; 2016 Mar; 104(1-2):322-8. PubMed ID: 26795119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Oil spill identification by near-infrared spectroscopy].
    Wang L; Zhuo L; He Y; Zhao Y; Li W; Wang XR; Lee F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Dec; 24(12):1537-9. PubMed ID: 15828320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Raman spectroscopy combined with pattern recognition methods for rapid identification of crude soybean oil adulteration].
    Li BN; Wu YW; Wang Y; Zu WC; Chen SC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2696-700. PubMed ID: 25739210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid fingerprinting of spilled petroleum products using fluorescence spectroscopy coupled with parallel factor and principal component analysis.
    Mirnaghi FS; Soucy N; Hollebone BP; Brown CE
    Chemosphere; 2018 Oct; 208():185-195. PubMed ID: 29864709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oil source recognition technology using concentration-synchronous-matrix-fluorescence spectroscopy combined with 2D wavelet packet and probabilistic neural network.
    Huang XD; Wang CY; Fan XM; Zhang JL; Yang C; Wang ZD
    Sci Total Environ; 2018 Mar; 616-617():632-638. PubMed ID: 29103640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid fingerprinting technology of heavy oil spill by mid-infrared spectroscopy.
    Zhang L; Huang X; Fan X; He W; Yang C; Wang C
    Environ Technol; 2021 Jan; 42(2):270-278. PubMed ID: 31169447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Recognition of corn seeds based on pattern recognition and near infrared spectroscopy technology].
    Liu TL; Su QY; Sun Q; Yang LM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1550-3. PubMed ID: 22870637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Recognition of corn seeds based on pattern recognition and near infrared spectroscopy technology].
    Liu TL; Su QY; Sun Q; Yang LM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 May; 32(5):1209-12. PubMed ID: 22827055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review.
    Xue J; Yu Y; Bai Y; Wang L; Wu Y
    Curr Microbiol; 2015 Aug; 71(2):220-8. PubMed ID: 25917503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Identification of egg freshness using near infrared spectroscopy and one class support vector machine algorithm].
    Lin H; Zhao JW; Chen QS; Cai JR; Zhou P
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):929-32. PubMed ID: 20545133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved semantic segmentation model based on SVM for marine oil spill detection using SAR image.
    Wang D; Liu S; Zhang C; Xu M; Yang J; Yasir M; Wan J
    Mar Pollut Bull; 2023 Jul; 192():114981. PubMed ID: 37209663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of residual oils during remediation activities after the Wu Yi San oil spill.
    Loh A; Yim UH; Ha SY; An JG; Shankar R
    Mar Pollut Bull; 2019 Jan; 138():328-332. PubMed ID: 30660281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid detecting total acid content and classifying different types of vinegar based on near infrared spectroscopy and least-squares support vector machine.
    Ji-yong S; Xiao-bo Z; Xiao-wei H; Jie-wen Z; Yanxiao L; Limin H; Jianchun Z
    Food Chem; 2013 May; 138(1):192-9. PubMed ID: 23265476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Sugar-Based Gelator for Marine Oil-Spill Recovery.
    Vibhute AM; Muvvala V; Sureshan KM
    Angew Chem Int Ed Engl; 2016 Jun; 55(27):7782-5. PubMed ID: 26821611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Handheld UV fluorescence spectrophotometer device for the classification and analysis of petroleum oil samples.
    Bills MV; Loh A; Sosnowski K; Nguyen BT; Ha SY; Yim UH; Yoon JY
    Biosens Bioelectron; 2020 Jul; 159():112193. PubMed ID: 32364941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated methodology for forensic oil spill identification.
    Christensen JH; Hansen AB; Tomasi G; Mortensen J; Andersen O
    Environ Sci Technol; 2004 May; 38(10):2912-8. PubMed ID: 15212267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Qualitative identification of tea categories by near infrared spectroscopy and support vector machine.
    Zhao J; Chen Q; Huang X; Fang CH
    J Pharm Biomed Anal; 2006 Jun; 41(4):1198-204. PubMed ID: 16621404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.
    Singha S; Vespe M; Trieschmann O
    Mar Pollut Bull; 2013 Aug; 73(1):199-209. PubMed ID: 23790462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology].
    Li XL; Yi SL; He SL; Lü Q; Xie RJ; Zheng YQ; Deng L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2639-43. PubMed ID: 26669182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.