BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 33158099)

  • 1. Predicting the Tool Wear of a Drilling Process Using Novel Machine Learning XGBoost-SDA.
    Alajmi MS; Almeshal AM
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33158099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method.
    Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH
    Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach.
    Gopukumar D; Ghoshal A; Zhao H
    JMIR Med Inform; 2022 Aug; 10(8):e37578. PubMed ID: 35896038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm.
    Xiong S; Liu Z; Min C; Shi Y; Zhang S; Liu W
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation and Optimization of Tool Wear in Conventional Turning of 709M40 Alloy Steel Using Support Vector Machine (SVM) with Bayesian Optimization.
    Alajmi MS; Almeshal AM
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia.
    Bhagat SK; Tung TM; Yaseen ZM
    J Hazard Mater; 2021 Feb; 403():123492. PubMed ID: 32763636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of sediment heavy metal at the Australian Bays using newly developed hybrid artificial intelligence models.
    Bhagat SK; Tiyasha T; Awadh SM; Tung TM; Jawad AH; Yaseen ZM
    Environ Pollut; 2021 Jan; 268(Pt B):115663. PubMed ID: 33120144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Use of Machine Learning Models for Prediction of Compressive Strength of Concrete: Influence of Dimensionality Reduction on the Model Performance.
    Wan Z; Xu Y; Šavija B
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33546376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hybrid Model for Temperature Prediction in a Sheep House.
    Feng D; Zhou B; Hassan SG; Xu L; Liu T; Cao L; Liu S; Guo J
    Animals (Basel); 2022 Oct; 12(20):. PubMed ID: 36290192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach.
    Tarwidi D; Pudjaprasetya SR; Adytia D; Apri M
    MethodsX; 2023; 10():102119. PubMed ID: 37007622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of RR-XGBoost combined model in data calibration of micro air quality detector.
    Liu B; Tan X; Jin Y; Yu W; Li C
    Sci Rep; 2021 Aug; 11(1):15662. PubMed ID: 34341407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of compressional sonic log in the western (Tano) sedimentary basin of Ghana, West Africa using supervised machine learning algorithms.
    Nero C; Aning AA; Danuor SK; Mensah V
    Heliyon; 2023 Sep; 9(9):e20242. PubMed ID: 37809898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data.
    Zhang XY; Huang Z; Su X; Siu A; Song Y; Zhang D; Fang Q
    PLoS One; 2020; 15(2):e0228645. PubMed ID: 32045452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized XGBoost Model with Small Dataset for Predicting Relative Density of Ti-6Al-4V Parts Manufactured by Selective Laser Melting.
    Zou M; Jiang WG; Qin QH; Liu YC; Li ML
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Machine Learning Approaches to Predict the Strength Property of Geopolymer Concrete.
    Cao R; Fang Z; Jin M; Shang Y
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling.
    Wiciak-Pikuła M; Felusiak-Czyryca A; Twardowski P
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33066308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tree based eXtreme Gradient Boosting (XGBoost) machine learning model to forecast the annual rice production in Bangladesh.
    Noorunnahar M; Chowdhury AH; Mila FA
    PLoS One; 2023; 18(3):e0283452. PubMed ID: 36972270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.
    Nishio M; Nishizawa M; Sugiyama O; Kojima R; Yakami M; Kuroda T; Togashi K
    PLoS One; 2018; 13(4):e0195875. PubMed ID: 29672639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-driven techniques for temperature data prediction: big data analytics approach.
    Oloyede A; Ozuomba S; Asuquo P; Olatomiwa L; Longe OM
    Environ Monit Assess; 2023 Jan; 195(2):343. PubMed ID: 36715815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of jumbo drill penetration rate in underground mines using various machine learning approaches and traditional models.
    Heydari S; Hoseinie SH; Bagherpour R
    Sci Rep; 2024 Apr; 14(1):8928. PubMed ID: 38637673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.