These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 33158286)
1. Hollow Gold-Silver Nanoshells Coated with Ultrathin SiO Srinoi P; Marquez MD; Lee TC; Lee TR Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33158286 [TBL] [Abstract][Full Text] [Related]
2. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability. Li CH; Jamison AC; Rittikulsittichai S; Lee TC; Lee TR ACS Appl Mater Interfaces; 2014 Nov; 6(22):19943-50. PubMed ID: 25321928 [TBL] [Abstract][Full Text] [Related]
3. Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold-Silver Nanoshells. Li CH; Li MC; Liu SP; Jamison AC; Lee D; Lee TR; Lee TC ACS Appl Mater Interfaces; 2016 Apr; 8(14):9152-61. PubMed ID: 26973998 [TBL] [Abstract][Full Text] [Related]
4. Preparation, characterization, and optical properties of gold, silver, and gold-silver alloy nanoshells having silica cores. Kim JH; Bryan WW; Lee TR Langmuir; 2008 Oct; 24(19):11147-52. PubMed ID: 18788760 [TBL] [Abstract][Full Text] [Related]
5. Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared. Vongsavat V; Vittur BM; Bryan WW; Kim JH; Lee TR ACS Appl Mater Interfaces; 2011 Sep; 3(9):3616-24. PubMed ID: 21761855 [TBL] [Abstract][Full Text] [Related]
6. Ultrathin gold-shell coated silver nanoparticles onto a glass platform for improvement of plasmonic sensors. Dong P; Lin Y; Deng J; Di J ACS Appl Mater Interfaces; 2013 Apr; 5(7):2392-9. PubMed ID: 23477284 [TBL] [Abstract][Full Text] [Related]
7. Visualizing the size, shape, morphology, and localized surface plasmon resonance of individual gold nanoshells by near-infrared multispectral imaging microscopy. Mejac I; Bryan WW; Lee TR; Tran CD Anal Chem; 2009 Aug; 81(16):6687-94. PubMed ID: 19618908 [TBL] [Abstract][Full Text] [Related]
8. Improved synthesis of gold and silver nanoshells. Brito-Silva AM; Sobral-Filho RG; Barbosa-Silva R; de Araújo CB; Galembeck A; Brolo AG Langmuir; 2013 Apr; 29(13):4366-72. PubMed ID: 23472978 [TBL] [Abstract][Full Text] [Related]
9. Optically Tunable Tin Oxide-Coated Hollow Gold-Silver Nanorattles for Use in Solar-Driven Applications. Li CH; Khantamat O; Liu T; Arnob MMP; Lin L; Jamison AC; Shih WC; Lee TC; Lee TR ACS Omega; 2020 Sep; 5(37):23769-23777. PubMed ID: 32984696 [TBL] [Abstract][Full Text] [Related]
10. Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light. Lu B; Liu A; Wu H; Shen Q; Zhao T; Wang J Langmuir; 2016 Mar; 32(12):3085-94. PubMed ID: 26954100 [TBL] [Abstract][Full Text] [Related]
11. Tailored core-shell-shell nanostructures: sandwiching gold nanoparticles between silica cores and tunable silica shells. Shi YL; Asefa T Langmuir; 2007 Aug; 23(18):9455-62. PubMed ID: 17661498 [TBL] [Abstract][Full Text] [Related]
12. Bimetallic Nanoshells for Metal - Enhanced Fluorescence with Broad Band Fluorophores. Zhang J; Fu Y; Mahdavi F J Phys Chem C Nanomater Interfaces; 2012 Nov; 116(45):24224-24232. PubMed ID: 23230456 [TBL] [Abstract][Full Text] [Related]
13. Exploration of the growth process of ultrathin silica shells on the surface of gold nanorods by the localized surface plasmon resonance. Li C; Li Y; Ling Y; Lai Y; Wu C; Zhao Y Nanotechnology; 2014 Jan; 25(4):045704. PubMed ID: 24394626 [TBL] [Abstract][Full Text] [Related]
14. Core-Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based Naked-Eye Toxin Biosensing. Loiseau A; Zhang L; Hu D; Salmain M; Mazouzi Y; Flack R; Liedberg B; Boujday S ACS Appl Mater Interfaces; 2019 Dec; 11(50):46462-46471. PubMed ID: 31744295 [TBL] [Abstract][Full Text] [Related]
15. Near-IR-Absorbing Gold Nanoframes with Enhanced Physiological Stability and Improved Biocompatibility for In Vivo Biomedical Applications. Wang L; Chen Y; Lin HY; Hou YT; Yang LC; Sun AY; Liu JY; Chang CW; Wan D ACS Appl Mater Interfaces; 2017 Feb; 9(4):3873-3884. PubMed ID: 28071899 [TBL] [Abstract][Full Text] [Related]
16. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Prevo BG; Esakoff SA; Mikhailovsky A; Zasadzinski JA Small; 2008 Aug; 4(8):1183-95. PubMed ID: 18623295 [TBL] [Abstract][Full Text] [Related]
17. Tunable near-infrared optical properties of three-layered metal nanoshells. Wu D; Xu X; Liu X J Chem Phys; 2008 Aug; 129(7):074711. PubMed ID: 19044796 [TBL] [Abstract][Full Text] [Related]
18. A one-step short-time synthesis of Ag@SiO2 core-shell nanoparticles. Lismont M; Páez CA; Dreesen L J Colloid Interface Sci; 2015 Jun; 447():40-9. PubMed ID: 25697687 [TBL] [Abstract][Full Text] [Related]
19. Transition metal dichalcogenide coated gold nanoshells for highly effective photothermal therapy. Bagheri S; Farokhnezhad M; Esmaeilzadeh M Phys Chem Chem Phys; 2023 Dec; 25(48):33038-33047. PubMed ID: 38037391 [TBL] [Abstract][Full Text] [Related]