These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 33158755)

  • 1. Embracing Change: Continual Learning in Deep Neural Networks.
    Hadsell R; Rao D; Rusu AA; Pascanu R
    Trends Cogn Sci; 2020 Dec; 24(12):1028-1040. PubMed ID: 33158755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Schematic memory persistence and transience for efficient and robust continual learning.
    Gao Y; Ascoli GA; Zhao L
    Neural Netw; 2021 Dec; 144():49-60. PubMed ID: 34450446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continual lifelong learning with neural networks: A review.
    Parisi GI; Kemker R; Part JL; Kanan C; Wermter S
    Neural Netw; 2019 May; 113():54-71. PubMed ID: 30780045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Memory Recall: A Simple Neural Network Training Framework Against Catastrophic Forgetting.
    Zhang B; Guo Y; Li Y; He Y; Wang H; Dai Q
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2010-2022. PubMed ID: 34339377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial Perturbation Network for Designing General Adaptive Artificial Intelligence Systems.
    Wen S; Rios A; Ge Y; Itti L
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3778-3791. PubMed ID: 33596177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming catastrophic forgetting in neural networks.
    Kirkpatrick J; Pascanu R; Rabinowitz N; Veness J; Desjardins G; Rusu AA; Milan K; Quan J; Ramalho T; Grabska-Barwinska A; Hassabis D; Clopath C; Kumaran D; Hadsell R
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3521-3526. PubMed ID: 28292907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient, continual, and generalized learning in the brain - neural mechanism of Mental Schema 2.0.
    Ohki T; Kunii N; Chao ZC
    Rev Neurosci; 2023 Dec; 34(8):839-868. PubMed ID: 36960579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. If deep learning is the answer, what is the question?
    Saxe A; Nelli S; Summerfield C
    Nat Rev Neurosci; 2021 Jan; 22(1):55-67. PubMed ID: 33199854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience research.
    Macpherson T; Churchland A; Sejnowski T; DiCarlo J; Kamitani Y; Takahashi H; Hikida T
    Neural Netw; 2021 Dec; 144():603-613. PubMed ID: 34649035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symbolic Deep Networks: A Psychologically Inspired Lightweight and Efficient Approach to Deep Learning.
    Veksler VD; Hoffman BE; Buchler N
    Top Cogn Sci; 2022 Oct; 14(4):702-717. PubMed ID: 34609080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Role of artificial intelligence in the diagnosis and treatment of gastrointestinal diseases].
    Yu YY
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jan; 23(1):33-37. PubMed ID: 31958928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks.
    Soltoggio A; Stanley KO; Risi S
    Neural Netw; 2018 Dec; 108():48-67. PubMed ID: 30142505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online continual learning with declarative memory.
    Xiao Z; Du Z; Wang R; Gan R; Li J
    Neural Netw; 2023 Jun; 163():146-155. PubMed ID: 37054513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning offline: memory replay in biological and artificial reinforcement learning.
    Roscow EL; Chua R; Costa RP; Jones MW; Lepora N
    Trends Neurosci; 2021 Oct; 44(10):808-821. PubMed ID: 34481635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a Less Artificial Intelligence.
    Sinz FH; Pitkow X; Reimer J; Bethge M; Tolias AS
    Neuron; 2019 Sep; 103(6):967-979. PubMed ID: 31557461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NeuroLISP: High-level symbolic programming with attractor neural networks.
    Davis GP; Katz GE; Gentili RJ; Reggia JA
    Neural Netw; 2022 Feb; 146():200-219. PubMed ID: 34894482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Placing language in an integrated understanding system: Next steps toward human-level performance in neural language models.
    McClelland JL; Hill F; Rudolph M; Baldridge J; Schütze H
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):25966-25974. PubMed ID: 32989131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The diagnostic and prognostic value of artificial intelligence and artificial neural networks in spinal surgery : a narrative review.
    McDonnell JM; Evans SR; McCarthy L; Temperley H; Waters C; Ahern D; Cunniffe G; Morris S; Synnott K; Birch N; Butler JS
    Bone Joint J; 2021 Sep; 103-B(9):1442-1448. PubMed ID: 34465148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lifelong 3D object recognition and grasp synthesis using dual memory recurrent self-organization networks.
    Santhakumar K; Kasaei H
    Neural Netw; 2022 Jun; 150():167-180. PubMed ID: 35313248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.