These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33158755)

  • 21. Lifelong 3D object recognition and grasp synthesis using dual memory recurrent self-organization networks.
    Santhakumar K; Kasaei H
    Neural Netw; 2022 Jun; 150():167-180. PubMed ID: 35313248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging.
    Currie G; Hawk KE; Rohren E; Vial A; Klein R
    J Med Imaging Radiat Sci; 2019 Dec; 50(4):477-487. PubMed ID: 31601480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches.
    Lin E; Lin CH; Lane HY
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploiting the stimuli encoding scheme of evolving Spiking Neural Networks for stream learning.
    Lobo JL; Oregi I; Bifet A; Del Ser J
    Neural Netw; 2020 Mar; 123():118-133. PubMed ID: 31841878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collective computational intelligence in biology - Emergence of memory in somatic tissues.
    Samarasinghe S
    Biosystems; 2023 Jan; 223():104816. PubMed ID: 36436698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Explainable Artificial Intelligence (XAI) in Pain Research: Understanding the Role of Electrodermal Activity for Automated Pain Recognition.
    Gouverneur P; Li F; Shirahama K; Luebke L; Adamczyk WM; Szikszay TM; Luedtke K; Grzegorzek M
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
    Ellefsen KO; Mouret JB; Clune J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004128. PubMed ID: 25837826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-Net: Lifelong Learning via Continual Self-Modeling.
    Mandivarapu JK; Camp B; Estrada R
    Front Artif Intell; 2020; 3():19. PubMed ID: 33733138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Basis and perspectives of artificial intelligence in radiation therapy].
    Burgun A
    Cancer Radiother; 2019 Dec; 23(8):913-916. PubMed ID: 31645301
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Could advances in representation learning in Artificial Intelligence provide the new paradigm for data integration in drug discovery?
    Vijayan V; Rouillard AD; Rajpal DK; Agarwal P
    Expert Opin Drug Discov; 2019 Mar; 14(3):191-194. PubMed ID: 30696299
    [No Abstract]   [Full Text] [Related]  

  • 31. Digging deeper on "deep" learning: A computational ecology approach.
    Buscema M; Sacco PL
    Behav Brain Sci; 2017 Jan; 40():e256. PubMed ID: 29342699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Brain-Inspired Framework for Evolutionary Artificial General Intelligence.
    Nadji-Tehrani M; Eslami A
    IEEE Trans Neural Netw Learn Syst; 2020 Dec; 31(12):5257-5271. PubMed ID: 32175876
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep reinforcement learning to study spatial navigation, learning and memory in artificial and biological agents.
    Bermudez-Contreras E
    Biol Cybern; 2021 Apr; 115(2):131-134. PubMed ID: 33564968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adversarial Feature Alignment: Avoid Catastrophic Forgetting in Incremental Task Lifelong Learning.
    Yao X; Huang T; Wu C; Zhang RX; Sun L
    Neural Comput; 2019 Nov; 31(11):2266-2291. PubMed ID: 31525313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI.
    Mazurowski MA; Buda M; Saha A; Bashir MR
    J Magn Reson Imaging; 2019 Apr; 49(4):939-954. PubMed ID: 30575178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A deep learning framework for neuroscience.
    Richards BA; Lillicrap TP; Beaudoin P; Bengio Y; Bogacz R; Christensen A; Clopath C; Costa RP; de Berker A; Ganguli S; Gillon CJ; Hafner D; Kepecs A; Kriegeskorte N; Latham P; Lindsay GW; Miller KD; Naud R; Pack CC; Poirazi P; Roelfsema P; Sacramento J; Saxe A; Scellier B; Schapiro AC; Senn W; Wayne G; Yamins D; Zenke F; Zylberberg J; Therien D; Kording KP
    Nat Neurosci; 2019 Nov; 22(11):1761-1770. PubMed ID: 31659335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structured Ensembles: An approach to reduce the memory footprint of ensemble methods.
    Pomponi J; Scardapane S; Uncini A
    Neural Netw; 2021 Dec; 144():407-418. PubMed ID: 34562814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A survey and perspective on neuromorphic continual learning systems.
    Mishra R; Suri M
    Front Neurosci; 2023; 17():1149410. PubMed ID: 37214407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural inhibition for continual learning and memory.
    Barron HC
    Curr Opin Neurobiol; 2021 Apr; 67():85-94. PubMed ID: 33129012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Applications of Artificial Intelligence in Musculoskeletal System Imaging].
    Li Y; Zhang EL; Li WJ; Lang N; Yuan HS
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2020 Apr; 42(2):242-246. PubMed ID: 32385032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.