These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

649 related articles for article (PubMed ID: 33158879)

  • 1. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis.
    Hu W; Chen Y; Dou C; Dong S
    Ann Rheum Dis; 2021 Apr; 80(4):413-422. PubMed ID: 33158879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis.
    Zhen G; Cao X
    Trends Pharmacol Sci; 2014 May; 35(5):227-36. PubMed ID: 24745631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoarthritic Subchondral Bone Release Exosomes That Promote Cartilage Degeneration.
    Wu X; Crawford R; Xiao Y; Mao X; Prasadam I
    Cells; 2021 Jan; 10(2):. PubMed ID: 33525381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular alterations and crosstalk in the osteochondral joint in osteoarthritis and promising therapeutic strategies.
    Jiang A; Xu P; Sun S; Zhao Z; Tan Q; Li W; Song C; Leng H
    Connect Tissue Res; 2021 Nov; 62(6):709-719. PubMed ID: 33397157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of soluble 14-3-3∊ as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis.
    Priam S; Bougault C; Houard X; Gosset M; Salvat C; Berenbaum F; Jacques C
    Arthritis Rheum; 2013 Jul; 65(7):1831-42. PubMed ID: 23552998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes.
    Li G; Yin J; Gao J; Cheng TS; Pavlos NJ; Zhang C; Zheng MH
    Arthritis Res Ther; 2013; 15(6):223. PubMed ID: 24321104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast-chondrocyte interactions in osteoarthritis.
    Findlay DM; Atkins GJ
    Curr Osteoporos Rep; 2014 Mar; 12(1):127-34. PubMed ID: 24458429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies.
    Yuan XL; Meng HY; Wang YC; Peng J; Guo QY; Wang AY; Lu SB
    Osteoarthritis Cartilage; 2014 Aug; 22(8):1077-89. PubMed ID: 24928319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific inhibition of FAK signaling attenuates subchondral bone deterioration and articular cartilage degeneration during osteoarthritis pathogenesis.
    Wu H; Xu T; Chen Z; Wang Y; Li K; Chen PS; Yao Z; Su J; Cheng C; Wu X; Zhang H; Chai Y; Zhang X; Hu Y; Yu B; Cui Z
    J Cell Physiol; 2020 Nov; 235(11):8653-8666. PubMed ID: 32324278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sotrastaurin, a PKC inhibitor, attenuates RANKL-induced bone resorption and attenuates osteochondral pathologies associated with the development of OA.
    Pang C; Wen L; Qin H; Zhu B; Lu X; Luo S
    J Cell Mol Med; 2020 Aug; 24(15):8452-8465. PubMed ID: 32652826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IgSF11 deficiency alleviates osteoarthritis in mice by suppressing early subchondral bone changes.
    Kim GM; Kim J; Lee JY; Park MC; Lee SY
    Exp Mol Med; 2023 Dec; 55(12):2576-2585. PubMed ID: 38036734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subchondral bone changes and the impacts on joint pain and articular cartilage degeneration in osteoarthritis.
    Yu D; Xu J; Liu F; Wang X; Mao Y; Zhu Z
    Clin Exp Rheumatol; 2016; 34(5):929-934. PubMed ID: 27606839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between cartilage and subchondral bone contributing to pathogenesis of osteoarthritis.
    Sharma AR; Jagga S; Lee SS; Nam JS
    Int J Mol Sci; 2013 Sep; 14(10):19805-30. PubMed ID: 24084727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The role of Wnt signaling pathway in osteoarthritis via the dual-targeted regulation of cartilage and subchondral bone].
    Lian Q; Chi B; Zhang L; Tian F
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2020 Jun; 34(6):797-803. PubMed ID: 32538575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of SDF-1/CXCR4 Axis to Alleviate Abnormal Bone Formation and Angiogenesis Could Improve the Subchondral Bone Microenvironment in Osteoarthritis.
    Qin H; Zhao X; Hu YJ; Wang S; Ma Y; He S; Shen K; Wan H; Cui Z; Yu B
    Biomed Res Int; 2021; 2021():8852574. PubMed ID: 34136574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SDF-1/CXCR4 axis coordinates crosstalk between subchondral bone and articular cartilage in osteoarthritis pathogenesis.
    Qin HJ; Xu T; Wu HT; Yao ZL; Hou YL; Xie YH; Su JW; Cheng CY; Yang KF; Zhang XR; Chai Y; Yu B; Cui Z
    Bone; 2019 Aug; 125():140-150. PubMed ID: 31108241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subchondral osteoclasts and osteoarthritis: new insights and potential therapeutic avenues.
    Chen W; Wang Q; Tao H; Lu L; Zhou J; Wang Q; Huang W; Yang X
    Acta Biochim Biophys Sin (Shanghai); 2024 Apr; 56(4):499-512. PubMed ID: 38439665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dickkopf‑3 and β‑catenin play opposite roles in the Wnt/β‑catenin pathway during the abnormal subchondral bone formation of human knee osteoarthritis.
    Liang X; Jin Q; Yang X; Jiang W
    Int J Mol Med; 2022 Apr; 49(4):. PubMed ID: 35137918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomic nervous regulation of cellular processes during subchondral bone remodeling in osteoarthritis.
    Rösch G; Zaucke F; Jenei-Lanzl Z
    Am J Physiol Cell Physiol; 2023 Aug; 325(2):C365-C384. PubMed ID: 37335027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type H vessels-a bridge connecting subchondral bone remodelling and articular cartilage degeneration in osteoarthritis development.
    Liu Y; Xie HQ; Shen B
    Rheumatology (Oxford); 2023 Apr; 62(4):1436-1444. PubMed ID: 36179083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.