These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
607 related articles for article (PubMed ID: 33159064)
1. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Avila Cobos F; Alquicira-Hernandez J; Powell JE; Mestdagh P; De Preter K Nat Commun; 2020 Nov; 11(1):5650. PubMed ID: 33159064 [TBL] [Abstract][Full Text] [Related]
2. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data. Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175 [TBL] [Abstract][Full Text] [Related]
3. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data. Wang C; Lin Y; Li S; Guan J BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558 [TBL] [Abstract][Full Text] [Related]
4. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics. Sang-Aram C; Browaeys R; Seurinck R; Saeys Y Elife; 2024 May; 12():. PubMed ID: 38787371 [TBL] [Abstract][Full Text] [Related]
5. Normalization of Single-Cell RNA-Seq Data. Risso D Methods Mol Biol; 2021; 2284():303-329. PubMed ID: 33835450 [TBL] [Abstract][Full Text] [Related]
6. HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD). Chiu YJ; Ni CE; Huang YH BMC Med Genomics; 2023 Oct; 16(Suppl 2):272. PubMed ID: 37907883 [TBL] [Abstract][Full Text] [Related]
7. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes. Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411 [TBL] [Abstract][Full Text] [Related]
8. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge. Chen C; Leung YY; Ionita M; Wang LS; Li M Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155 [TBL] [Abstract][Full Text] [Related]
9. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology. Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342 [TBL] [Abstract][Full Text] [Related]
10. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets. Maden SK; Kwon SH; Huuki-Myers LA; Collado-Torres L; Hicks SC; Maynard KR Genome Biol; 2023 Dec; 24(1):288. PubMed ID: 38098055 [TBL] [Abstract][Full Text] [Related]
11. SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics. Swain AK; Pandit V; Sharma J; Yadav P Commun Biol; 2024 May; 7(1):639. PubMed ID: 38796505 [TBL] [Abstract][Full Text] [Related]
12. Single cell transcriptomics in human osteoarthritis synovium and in silico deconvoluted bulk RNA sequencing. Huang ZY; Luo ZY; Cai YR; Chou CH; Yao ML; Pei FX; Kraus VB; Zhou ZK Osteoarthritis Cartilage; 2022 Mar; 30(3):475-480. PubMed ID: 34971754 [TBL] [Abstract][Full Text] [Related]
13. Data Analysis in Single-Cell Transcriptome Sequencing. Gao S Methods Mol Biol; 2018; 1754():311-326. PubMed ID: 29536451 [TBL] [Abstract][Full Text] [Related]
14. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve. Charytonowicz D; Brody R; Sebra R Nat Commun; 2023 Mar; 14(1):1350. PubMed ID: 36906603 [TBL] [Abstract][Full Text] [Related]
15. SimBu: bias-aware simulation of bulk RNA-seq data with variable cell-type composition. Dietrich A; Sturm G; Merotto L; Marini F; Finotello F; List M Bioinformatics; 2022 Sep; 38(Suppl_2):ii141-ii147. PubMed ID: 36124800 [TBL] [Abstract][Full Text] [Related]
16. New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution. Nishikawa T; Lee M; Amau M Sci Rep; 2024 Feb; 14(1):4156. PubMed ID: 38378978 [TBL] [Abstract][Full Text] [Related]
17. Spatially informed cell-type deconvolution for spatial transcriptomics. Ma Y; Zhou X Nat Biotechnol; 2022 Sep; 40(9):1349-1359. PubMed ID: 35501392 [TBL] [Abstract][Full Text] [Related]
18. Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods. Hu M; Chikina M Genome Biol; 2024 Jul; 25(1):169. PubMed ID: 38956606 [TBL] [Abstract][Full Text] [Related]
19. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Li B; Zhang W; Guo C; Xu H; Li L; Fang M; Hu Y; Zhang X; Yao X; Tang M; Liu K; Zhao X; Lin J; Cheng L; Chen F; Xue T; Qu K Nat Methods; 2022 Jun; 19(6):662-670. PubMed ID: 35577954 [TBL] [Abstract][Full Text] [Related]