These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 33159082)

  • 21. Splicing quality control mediated by DHX15 and its G-patch activator SUGP1.
    Feng Q; Krick K; Chu J; Burge CB
    Cell Rep; 2023 Oct; 42(10):113223. PubMed ID: 37805921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cus2 enforces the first ATP-dependent step of splicing by binding to yeast SF3b1 through a UHM-ULM interaction.
    Talkish J; Igel H; Hunter O; Horner SW; Jeffery NN; Leach JR; Jenkins JL; Kielkopf CL; Ares M
    RNA; 2019 Aug; 25(8):1020-1037. PubMed ID: 31110137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular genetic analysis of the heterodimeric splicing factor U2AF: the RS domain on either the large or small Drosophila subunit is dispensable in vivo.
    Rudner DZ; Breger KS; Rio DC
    Genes Dev; 1998 Apr; 12(7):1010-21. PubMed ID: 9531538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UHMK1 is a novel splicing regulatory kinase.
    Arfelli VC; Chang YC; Bagnoli JW; Kerbs P; Ciamponi FE; Paz LMDS; Pankivskyi S; de Matha Salone J; Maucuer A; Massirer KB; Enard W; Kuster B; Greif PA; Archangelo LF
    J Biol Chem; 2023 Apr; 299(4):103041. PubMed ID: 36803961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing.
    Borao S; Ayté J; Hümmer S
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations.
    Cretu C; Schmitzová J; Ponce-Salvatierra A; Dybkov O; De Laurentiis EI; Sharma K; Will CL; Urlaub H; Lührmann R; Pena V
    Mol Cell; 2016 Oct; 64(2):307-319. PubMed ID: 27720643
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stoichiometries of U2AF35, U2AF65 and U2 snRNP reveal new early spliceosome assembly pathways.
    Chen L; Weinmeister R; Kralovicova J; Eperon LP; Vorechovsky I; Hudson AJ; Eperon IC
    Nucleic Acids Res; 2017 Feb; 45(4):2051-2067. PubMed ID: 27683217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Splicing Factor Mutations in Myelodysplasias: Insights from Spliceosome Structures.
    Jenkins JL; Kielkopf CL
    Trends Genet; 2017 May; 33(5):336-348. PubMed ID: 28372848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure, phosphorylation and U2AF65 binding of the N-terminal domain of splicing factor 1 during 3'-splice site recognition.
    Zhang Y; Madl T; Bagdiul I; Kern T; Kang HS; Zou P; Mäusbacher N; Sieber SA; Krämer A; Sattler M
    Nucleic Acids Res; 2013 Jan; 41(2):1343-54. PubMed ID: 23175611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unmasking the U2AF homology motif family: a bona fide protein-protein interaction motif in disguise.
    Loerch S; Kielkopf CL
    RNA; 2016 Dec; 22(12):1795-1807. PubMed ID: 27852923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Splicing factors SF1 and U2AF associate in extraspliceosomal complexes.
    Rino J; Desterro JM; Pacheco TR; Gadella TW; Carmo-Fonseca M
    Mol Cell Biol; 2008 May; 28(9):3045-57. PubMed ID: 18285458
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons.
    Kralovicova J; Vorechovsky I
    Nucleic Acids Res; 2017 Jan; 45(1):417-434. PubMed ID: 27566151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural dynamics of the N-terminal domain and the Switch loop of Prp8 during spliceosome assembly and activation.
    Jia X; Sun C
    Nucleic Acids Res; 2018 May; 46(8):3833-3840. PubMed ID: 29635373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unraveling the mechanism of recognition of the 3' splice site of the adenovirus major late promoter intron by the alternative splicing factor PUF60.
    Hsiao HT; Crichlow GV; Murphy JW; Folta-Stogniew EJ; Lolis EJ; Braddock DT
    PLoS One; 2020; 15(11):e0242725. PubMed ID: 33253191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly.
    Rutz B; Séraphin B
    RNA; 1999 Jun; 5(6):819-31. PubMed ID: 10376880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Backbone assignment of the UHM domain of Puf60 free and bound to five ligands.
    Corsini L; Sattler M
    Biomol NMR Assign; 2008 Dec; 2(2):211-4. PubMed ID: 19636907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a U2AF-independent commitment complex (E') in the mammalian spliceosome assembly pathway.
    Kent OA; Ritchie DB; Macmillan AM
    Mol Cell Biol; 2005 Jan; 25(1):233-40. PubMed ID: 15601845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Promoting spliceosome assembly for therapeutic intent.
    Lu B; Abdel-Wahab O
    Trends Pharmacol Sci; 2021 Dec; 42(12):981-983. PubMed ID: 34602305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-throughput splicing assay identifies new classes of inhibitors of human and yeast spliceosomes.
    Effenberger KA; Perriman RJ; Bray WM; Lokey RS; Ares M; Jurica MS
    J Biomol Screen; 2013 Oct; 18(9):1110-20. PubMed ID: 23771823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SC35-mediated reconstitution of splicing in U2AF-depleted nuclear extract.
    MacMillan AM; McCaw PS; Crispino JD; Sharp PA
    Proc Natl Acad Sci U S A; 1997 Jan; 94(1):133-6. PubMed ID: 8990173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.