These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 33159140)

  • 1. Genome editing in plants using CRISPR type I-D nuclease.
    Osakabe K; Wada N; Miyaji T; Murakami E; Marui K; Ueta R; Hashimoto R; Abe-Hara C; Kong B; Yano K; Osakabe Y
    Commun Biol; 2020 Nov; 3(1):648. PubMed ID: 33159140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type I-D CRISPR System-Mediated Genome Editing in Plants.
    Wada N; Osakabe K; Osakabe Y
    Methods Mol Biol; 2023; 2653():21-38. PubMed ID: 36995617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives.
    Mahfouz MM; Piatek A; Stewart CN
    Plant Biotechnol J; 2014 Oct; 12(8):1006-14. PubMed ID: 25250853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comprehensive Protocol for Assembly of Multiple gRNAs into a Direct Vector for Genome Editing in Tomato.
    Satyavathi VV; Princy K; Gupta N; Nizampatnam NR; Sharma R; Sreelakshmi Y
    Methods Mol Biol; 2024; 2788():317-335. PubMed ID: 38656523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application and development of genome editing technologies to the Solanaceae plants.
    Yamamoto T; Kashojiya S; Kamimura S; Kameyama T; Ariizumi T; Ezura H; Miura K
    Plant Physiol Biochem; 2018 Oct; 131():37-46. PubMed ID: 29523384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing in mammalian cells using the CRISPR type I-D nuclease.
    Osakabe K; Wada N; Murakami E; Miyashita N; Osakabe Y
    Nucleic Acids Res; 2021 Jun; 49(11):6347-6363. PubMed ID: 34076237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The CRISPR/Cas9 system for plant genome editing and beyond.
    Bortesi L; Fischer R
    Biotechnol Adv; 2015; 33(1):41-52. PubMed ID: 25536441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-based precise excision of SlHyPRP1 domain(s) to obtain salt stress-tolerant tomato.
    Tran MT; Doan DTH; Kim J; Song YJ; Sung YW; Das S; Kim EJ; Son GH; Kim SH; Van Vu T; Kim JY
    Plant Cell Rep; 2021 Jun; 40(6):999-1011. PubMed ID: 33074435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Cpf1: A New Tool for Plant Genome Editing.
    Zaidi SS; Mahfouz MM; Mansoor S
    Trends Plant Sci; 2017 Jul; 22(7):550-553. PubMed ID: 28532598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome editing in rice and tomato with a small Un1Cas12f1 nuclease.
    Tang X; Eid A; Zhang R; Cheng Y; Liu A; Chen Y; Chen P; Zhang Y; Qi Y
    Plant Genome; 2024 Jun; 17(2):e20465. PubMed ID: 38807445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact Cascade-Cas3 system for targeted genome engineering.
    Csörgő B; León LM; Chau-Ly IJ; Vasquez-Rifo A; Berry JD; Mahendra C; Crawford ED; Lewis JD; Bondy-Denomy J
    Nat Methods; 2020 Dec; 17(12):1183-1190. PubMed ID: 33077967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems.
    Tan R; Krueger RK; Gramelspacher MJ; Zhou X; Xiao Y; Ke A; Hou Z; Zhang Y
    Mol Cell; 2022 Feb; 82(4):852-867.e5. PubMed ID: 35051351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes.
    Soyars CL; Peterson BA; Burr CA; Nimchuk ZL
    Plant Cell Physiol; 2018 Aug; 59(8):1608-1620. PubMed ID: 29912402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system.
    Brooks C; Nekrasov V; Lippman ZB; Van Eck J
    Plant Physiol; 2014 Nov; 166(3):1292-7. PubMed ID: 25225186
    [No Abstract]   [Full Text] [Related]  

  • 17. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].
    Ma XL; Liu YG
    Yi Chuan; 2016 Feb; 38(2):118-25. PubMed ID: 26907775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Base Editing with CRISPR-Deaminase in Tomato.
    Shimatani Z; Ariizumi T; Fujikura U; Kondo A; Ezura H; Nishida K
    Methods Mol Biol; 2019; 1917():297-307. PubMed ID: 30610645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A status-quo review on CRISPR-Cas9 gene editing applications in tomato.
    Chandrasekaran M; Boopathi T; Paramasivan M
    Int J Biol Macromol; 2021 Nov; 190():120-129. PubMed ID: 34474054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.