These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33159712)

  • 1. Ensemble modelling, uncertainty and robust predictions of organic carbon in long-term bare-fallow soils.
    Farina R; Sándor R; Abdalla M; Álvaro-Fuentes J; Bechini L; Bolinder MA; Brilli L; Chenu C; Clivot H; De Antoni Migliorati M; Di Bene C; Dorich CD; Ehrhardt F; Ferchaud F; Fitton N; Francaviglia R; Franko U; Giltrap DL; Grant BB; Guenet B; Harrison MT; Kirschbaum MUF; Kuka K; Kulmala L; Liski J; McGrath MJ; Meier E; Menichetti L; Moyano F; Nendel C; Recous S; Reibold N; Shepherd A; Smith WN; Smith P; Soussana JF; Stella T; Taghizadeh-Toosi A; Tsutskikh E; Bellocchi G
    Glob Chang Biol; 2021 Feb; 27(4):904-928. PubMed ID: 33159712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Higher temperature sensitivity for stable than for labile soil organic carbon--evidence from incubations of long-term bare fallow soils.
    Lefèvre R; Barré P; Moyano FE; Christensen BT; Bardoux G; Eglin T; Girardin C; Houot S; Kätterer T; van Oort F; Chenu C
    Glob Chang Biol; 2014 Feb; 20(2):633-40. PubMed ID: 24115336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments.
    Menichetti L; Houot S; van Oort F; Kätterer T; Christensen BT; Chenu C; Barré P; Vasilyeva NA; Ekblad A
    Oecologia; 2015 Mar; 177(3):811-821. PubMed ID: 25344418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of inverse modeling to evaluate CENTURY-predictions for soil carbon sequestration in US rain-fed corn production systems.
    Kwon H; Ugarte CM; Ogle SM; Williams SA; Wander MM
    PLoS One; 2017; 12(2):e0172861. PubMed ID: 28234992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of salinity effects on past, present, and future soil organic carbon stocks.
    Setia R; Smith P; Marschner P; Gottschalk P; Baldock J; Verma V; Setia D; Smith J
    Environ Sci Technol; 2012 Feb; 46(3):1624-31. PubMed ID: 22191398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of climate change on greenhouse gas emissions and water balance in a dryland-cropping region with variable precipitation.
    Karimi T; Stöckle CO; Higgins SS; Nelson RL
    J Environ Manage; 2021 Jun; 287():112301. PubMed ID: 33706089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.
    Setia R; Smith P; Marschner P; Baldock J; Chittleborough D; Smith J
    Environ Sci Technol; 2011 Aug; 45(15):6396-403. PubMed ID: 21671665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.
    Wertebach TM; Hölzel N; Kämpf I; Yurtaev A; Tupitsin S; Kiehl K; Kamp J; Kleinebecker T
    Glob Chang Biol; 2017 Sep; 23(9):3729-3741. PubMed ID: 28161907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions.
    Tian H; Lu C; Yang J; Banger K; Huntzinger DN; Schwalm CR; Michalak AM; Cook R; Ciais P; Hayes D; Huang M; Ito A; Jain AK; Lei H; Mao J; Pan S; Post WM; Peng S; Poulter B; Ren W; Ricciuto D; Schaefer K; Shi X; Tao B; Wang W; Wei Y; Yang Q; Zhang B; Zeng N
    Global Biogeochem Cycles; 2015 Jun; 29(6):775-792. PubMed ID: 27642229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing multifunctional agroecosystems in irrigated dryland agriculture to restore soil carbon - Experiments and modelling.
    Giongo V; Coleman K; da Silva Santana M; Salviano AM; Olszveski N; Silva DJ; Cunha TJF; Parente A; Whitmore AP; Richter GM
    Sci Total Environ; 2020 Jul; 725():138072. PubMed ID: 32298896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial models with data-driven parameters predict stronger soil carbon responses to climate change.
    Hararuk O; Smith MJ; Luo Y
    Glob Chang Biol; 2015 Jun; 21(6):2439-53. PubMed ID: 25504863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slash and burn management and permanent or rotation agroforestry systems: A comparative study for C sequestration by century model simulation.
    Primo AA; Araújo Neto RA; Zeferino LB; Fernandes FÉP; Araújo Filho JA; Cerri CEP; Oliveira TS
    J Environ Manage; 2023 Jun; 336():117594. PubMed ID: 36907067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Priming effects on labile and stable soil organic carbon decomposition: Pulse dynamics over two years.
    Zhang X; Han X; Yu W; Wang P; Cheng W
    PLoS One; 2017; 12(9):e0184978. PubMed ID: 28934287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verifiable soil organic carbon modelling to facilitate regional reporting of cropland carbon change: A test case in the Czech Republic.
    Balkovič J; Madaras M; Skalský R; Folberth C; Smatanová M; Schmid E; van der Velde M; Kraxner F; Obersteiner M
    J Environ Manage; 2020 Nov; 274():111206. PubMed ID: 32818829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new baseline of organic carbon stock in European agricultural soils using a modelling approach.
    Lugato E; Panagos P; Bampa F; Jones A; Montanarella L
    Glob Chang Biol; 2014 Jan; 20(1):313-26. PubMed ID: 23765562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forest understories controlled the soil organic carbon stock during the fallow period in African tropical forest: a
    Sugihara S; Shibata M; Mvondo Ze AD; Tanaka H; Kosaki T; Funakawa S
    Sci Rep; 2019 Jul; 9(1):9835. PubMed ID: 31285565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating Soil Organic Carbon Responses to Cropping Intensity, Tillage, and Climate Change in Pacific Northwest Dryland.
    Gollany HT; Polumsky RW
    J Environ Qual; 2018 Jul; 47(4):625-634. PubMed ID: 30025049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling the dynamic physical protection of soil organic carbon: Insights into carbon predictions and explanation of the priming effect.
    Luo Z; Baldock J; Wang E
    Glob Chang Biol; 2017 Dec; 23(12):5273-5283. PubMed ID: 28618203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils.
    Tautges NE; Chiartas JL; Gaudin ACM; O'Geen AT; Herrera I; Scow KM
    Glob Chang Biol; 2019 Nov; 25(11):3753-3766. PubMed ID: 31301684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Major limitations to achieving "4 per 1000" increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom.
    Poulton P; Johnston J; Macdonald A; White R; Powlson D
    Glob Chang Biol; 2018 Jun; 24(6):2563-2584. PubMed ID: 29356243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.