These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33159943)

  • 1. Monitoring the formation of insulin oligomers using a NIR emitting glucose-conjugated BODIPY dye.
    Mora AK; Murudkar S; Shivran N; Mula S; Chattopadhyay S; Nath S
    Int J Biol Macromol; 2021 Jan; 166():1121-1130. PubMed ID: 33159943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensing lysozyme fibrils by salicylaldimine substituted BODIPY dyes - A correlation with molecular structure.
    Sen A; Mora AK; Koli M; Mula S; Kundu S; Nath S
    Int J Biol Macromol; 2022 Nov; 220():901-909. PubMed ID: 35998856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting the Formation and Transformation of Oligomers during Insulin Fibrillation by a Dendrimer Conjugated with Aggregation-Induced Emission Molecule.
    Huang Q; Xie J; Liu Y; Zhou A; Li J
    Bioconjug Chem; 2017 Apr; 28(4):944-956. PubMed ID: 28112906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjugated BODIPY Oligomers with Controllable Near-Infrared Absorptions as Promising Phototheranostic Agents through Excited-State Intramolecular Rotations.
    Wu Q; Zhu Y; Fang X; Hao X; Jiao L; Hao E; Zhang W
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47208-47219. PubMed ID: 33035047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing the Multistep Process of Protein Aggregation in Live Cells.
    Ye S; Hsiung CH; Tang Y; Zhang X
    Acc Chem Res; 2022 Feb; 55(3):381-390. PubMed ID: 35040316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation-induced emission materials for protein fibrils imaging.
    Patel K; Shah SKH; Prabhakaran P
    Prog Mol Biol Transl Sci; 2021; 185():113-136. PubMed ID: 34782102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NIR Absorbing AzaBODIPY Dyes for pH Sensing.
    Kubheka G; Mack J; Nyokong T; Shen Z
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32823576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging.
    Li K; Duan X; Jiang Z; Ding D; Chen Y; Zhang GQ; Liu Z
    Nat Commun; 2021 Apr; 12(1):2376. PubMed ID: 33888714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aza-BODIPY: improved synthesis and interaction with soluble Aβ1-42 oligomers.
    Jameson LP; Dzyuba SV
    Bioorg Med Chem Lett; 2013 Mar; 23(6):1732-5. PubMed ID: 23416005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible Fluorescent Probe for Selective Detection of Amyloid Fibrils.
    Das A; Dutta T; Gadhe L; Koner AL; Saraogi I
    Anal Chem; 2020 Aug; 92(15):10336-10341. PubMed ID: 32635722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A highly sensitive two-photon fluorescent probe for glutathione with near-infrared emission at 719 nm and intracellular glutathione imaging.
    Huang C; Qian Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():68-76. PubMed ID: 30927573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of natural biopolymers on amyloid fibril formation and morphology.
    Ow SY; Bekard I; Dunstan DE
    Int J Biol Macromol; 2018 Jan; 106():30-38. PubMed ID: 28778524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast responding and selective near-IR Bodipy dye for hydrogen sulfide sensing.
    Ozdemir T; Sozmen F; Mamur S; Tekinay T; Akkaya EU
    Chem Commun (Camb); 2014 May; 50(41):5455-7. PubMed ID: 24714876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replacing phenyl ring with thiophene: an approach to longer wavelength aza-dipyrromethene boron difluoride (Aza-BODIPY) dyes.
    Zhang X; Yu H; Xiao Y
    J Org Chem; 2012 Jan; 77(1):669-73. PubMed ID: 22111977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-Bridged BODIPY oligomers with switchable near-IR photoproperties by external-stimuli-induced foldamer formation and disruption.
    Sakamoto N; Ikeda C; Yamamura M; Nabeshima T
    Chem Commun (Camb); 2012 May; 48(40):4818-20. PubMed ID: 22302032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Investigation of the kinetics of insulin amyloid fibrils formation].
    Sulatskaia AI; Volova EA; Komissarchik IaIu; Snigirevskaia ES; Maskevich AA; Drobchenko EA; Kuznetsova IM; Turoverov KK
    Tsitologiia; 2013; 55(11):809-14. PubMed ID: 25509136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimethine cyanine dyes as fluorescent probes for amyloid fibrils: The effect of N,N'-substituents.
    Kuperman MV; Chernii SV; Losytskyy MY; Kryvorotenko DV; Derevyanko NO; Slominskii YL; Kovalska VB; Yarmoluk SM
    Anal Biochem; 2015 Sep; 484():9-17. PubMed ID: 25963892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Molecular Form of Amyloid Marker, Auramine O, in Human Insulin Fibrils.
    Mudliar NH; Pettiwala AM; Awasthi AA; Singh PK
    J Phys Chem B; 2016 Dec; 120(49):12474-12485. PubMed ID: 27973839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediates caught in the act: tracing insulin amyloid fibril formation in time by combined optical spectroscopy, light scattering, mass spectrometry and microscopy.
    Gladytz A; Lugovoy E; Charvat A; Häupl T; Siefermann KR; Abel B
    Phys Chem Chem Phys; 2015 Jan; 17(2):918-27. PubMed ID: 25408431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular rotor-based turn-on sensor probe for amyloid fibrils in the extreme near-infrared region.
    Mudliar NH; Singh PK
    Chem Commun (Camb); 2019 Apr; 55(27):3907-3910. PubMed ID: 30869689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.