These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33160328)

  • 1. Prediction of enhancer-promoter interactions using the cross-cell type information and domain adversarial neural network.
    Jing F; Zhang SW; Zhang S
    BMC Bioinformatics; 2020 Nov; 21(1):507. PubMed ID: 33160328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EPI-Mind: Identifying Enhancer-Promoter Interactions Based on Transformer Mechanism.
    Ni Y; Fan L; Wang M; Zhang N; Zuo Y; Liao M
    Interdiscip Sci; 2022 Sep; 14(3):786-794. PubMed ID: 35633468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EPIHC: Improving Enhancer-Promoter Interaction Prediction by Using Hybrid Features and Communicative Learning.
    Liu S; Xu X; Yang Z; Zhao X; Liu S; Zhang W
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3435-3443. PubMed ID: 34473626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple convolutional neural network for prediction of enhancer-promoter interactions with DNA sequence data.
    Zhuang Z; Shen X; Pan W
    Bioinformatics; 2019 Sep; 35(17):2899-2906. PubMed ID: 30649185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence-Based Deep Learning Frameworks on Enhancer-Promoter Interactions Prediction.
    Min X; Lu F; Li C
    Curr Pharm Des; 2021; 27(15):1847-1855. PubMed ID: 33234095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPI-Trans: an effective transformer-based deep learning model for enhancer promoter interaction prediction.
    Ahmed FS; Aly S; Liu X
    BMC Bioinformatics; 2024 Jun; 25(1):216. PubMed ID: 38890584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPIP: a novel approach for condition-specific enhancer-promoter interaction prediction.
    Talukder A; Saadat S; Li X; Hu H
    Bioinformatics; 2019 Oct; 35(20):3877-3883. PubMed ID: 31410461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. StackEPI: identification of cell line-specific enhancer-promoter interactions based on stacking ensemble learning.
    Fan Y; Peng B
    BMC Bioinformatics; 2022 Jul; 23(1):272. PubMed ID: 35820811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPIsHilbert: Prediction of Enhancer-Promoter Interactions via Hilbert Curve Encoding and Transfer Learning.
    Zhang M; Hu Y; Zhu M
    Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism.
    Hong Z; Zeng X; Wei L; Liu X
    Bioinformatics; 2020 Feb; 36(4):1037-1043. PubMed ID: 31588505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting enhancer-promoter interactions by deep learning and matching heuristic.
    Min X; Ye C; Liu X; Zeng X
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33096548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying promoter and enhancer sequences by graph convolutional networks.
    Tenekeci S; Tekir S
    Comput Biol Chem; 2024 Jun; 110():108040. PubMed ID: 38430611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of long-range enhancer-promoter interactions by adding genomic signatures of segmented regulatory regions.
    Feng ZX; Li QZ
    Genomics; 2017 Oct; 109(5-6):341-352. PubMed ID: 28579514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization.
    Nikumbh S; Pfeifer N
    BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of enhancer-promoter interactions via natural language processing.
    Zeng W; Wu M; Jiang R
    BMC Genomics; 2018 May; 19(Suppl 2):84. PubMed ID: 29764360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting enhancer-promoter interaction based on epigenomic signals.
    Zheng L; Liu L; Zhu W; Ding Y; Wu F
    Front Genet; 2023; 14():1133775. PubMed ID: 37144127
    [No Abstract]   [Full Text] [Related]  

  • 19. iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength.
    Yang R; Wu F; Zhang C; Zhang L
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of the long range enhancer-promoter interactions by further adding DNA structure properties and transcription factor binding motifs in human cell lines.
    Feng ZX; Li QZ; Meng JJ
    J Theor Biol; 2018 May; 445():136-150. PubMed ID: 29476833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.