BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 33160457)

  • 1. Rational Selection of CRISPR-Cas9 Guide RNAs for Homology-Directed Genome Editing.
    Tatiossian KJ; Clark RDE; Huang C; Thornton ME; Grubbs BH; Cannon PM
    Mol Ther; 2021 Mar; 29(3):1057-1069. PubMed ID: 33160457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing.
    Fu YW; Dai XY; Wang WT; Yang ZX; Zhao JJ; Zhang JP; Wen W; Zhang F; Oberg KC; Zhang L; Cheng T; Zhang XB
    Nucleic Acids Res; 2021 Jan; 49(2):969-985. PubMed ID: 33398341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies.
    Bodai Z; Bishop AL; Gantz VM; Komor AC
    Nat Commun; 2022 May; 13(1):2351. PubMed ID: 35534455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precision Genome Editing with CRISPR-Cas9.
    Rahman S; Ikram AR; Azeem F; Tahir Ul Qamar M; Shaheen T; Mehboob-Ur-Rahman
    Methods Mol Biol; 2024; 2788():355-372. PubMed ID: 38656525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair.
    Kato-Inui T; Takahashi G; Hsu S; Miyaoka Y
    Nucleic Acids Res; 2018 May; 46(9):4677-4688. PubMed ID: 29672770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair.
    Schubert MS; Thommandru B; Woodley J; Turk R; Yan S; Kurgan G; McNeill MS; Rettig GR
    Sci Rep; 2021 Sep; 11(1):19482. PubMed ID: 34593942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision genome editing in the CRISPR era.
    Salsman J; Dellaire G
    Biochem Cell Biol; 2017 Apr; 95(2):187-201. PubMed ID: 28177771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recursive Editing improves homology-directed repair through retargeting of undesired outcomes.
    Möller L; Aird EJ; Schröder MS; Kobel L; Kissling L; van de Venn L; Corn JE
    Nat Commun; 2022 Aug; 13(1):4550. PubMed ID: 35931681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites.
    Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P
    Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair.
    Savic N; Ringnalda FC; Lindsay H; Berk C; Bargsten K; Li Y; Neri D; Robinson MD; Ciaudo C; Hall J; Jinek M; Schwank G
    Elife; 2018 May; 7():. PubMed ID: 29809142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic CRISPR/Cas9 reagents facilitate genome editing and homology directed repair.
    DiNapoli SE; Martinez-McFaline R; Gribbin CK; Wrighton PJ; Balgobin CA; Nelson I; Leonard A; Maskin CR; Shwartz A; Quenzer ED; Mailhiot D; Kao C; McConnell SC; de Jong JLO; Goessling W; Houvras Y
    Nucleic Acids Res; 2020 Apr; 48(7):e38. PubMed ID: 32064511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic analysis of factors that improve homologous direct repair (HDR) efficiency in CRISPR/Cas9 technique.
    Di Stazio M; Foschi N; Athanasakis E; Gasparini P; d'Adamo AP
    PLoS One; 2021; 16(3):e0247603. PubMed ID: 33667229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel Cas9 fusion protein promotes targeted genome editing with reduced mutational burden in primary human cells.
    Carusillo A; Haider S; Schäfer R; Rhiel M; Türk D; Chmielewski KO; Klermund J; Mosti L; Andrieux G; Schäfer R; Cornu TI; Cathomen T; Mussolino C
    Nucleic Acids Res; 2023 May; 51(9):4660-4673. PubMed ID: 37070192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cas9-transcription factor fusion protein enhances homology-directed repair efficiency.
    Li G; Wang H; Zhang X; Wu Z; Yang H
    J Biol Chem; 2021; 296():100525. PubMed ID: 33689695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.