These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33160692)
21. Label-driven magnetic resonance imaging (MRI)-transrectal ultrasound (TRUS) registration using weakly supervised learning for MRI-guided prostate radiotherapy. Zeng Q; Fu Y; Tian Z; Lei Y; Zhang Y; Wang T; Mao H; Liu T; Curran WJ; Jani AB; Patel P; Yang X Phys Med Biol; 2020 Jun; 65(13):135002. PubMed ID: 32330922 [TBL] [Abstract][Full Text] [Related]
22. Deep learning based fully automatic segmentation of the left ventricular endocardium and epicardium from cardiac cine MRI. Wang Y; Zhang Y; Wen Z; Tian B; Kao E; Liu X; Xuan W; Ordovas K; Saloner D; Liu J Quant Imaging Med Surg; 2021 Apr; 11(4):1600-1612. PubMed ID: 33816194 [TBL] [Abstract][Full Text] [Related]
23. Automatic labeling of MR brain images through extensible learning and atlas forests. Xu L; Liu H; Song E; Yan M; Jin R; Hung CC Med Phys; 2017 Dec; 44(12):6329-6340. PubMed ID: 28921541 [TBL] [Abstract][Full Text] [Related]
24. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
25. Cardiac MR segmentation based on sequence propagation by deep learning. Luo C; Shi C; Li X; Gao D PLoS One; 2020; 15(4):e0230415. PubMed ID: 32271777 [TBL] [Abstract][Full Text] [Related]
26. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients. Kwon K; Kim D; Kim B; Park H Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219 [TBL] [Abstract][Full Text] [Related]
27. coreMRI: A high-performance, publicly available MR simulation platform on the cloud. Xanthis CG; Aletras AH PLoS One; 2019; 14(5):e0216594. PubMed ID: 31100074 [TBL] [Abstract][Full Text] [Related]
28. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images. Naceur MB; Saouli R; Akil M; Kachouri R Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717 [TBL] [Abstract][Full Text] [Related]
29. An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement. Souza R; Lucena O; Garrafa J; Gobbi D; Saluzzi M; Appenzeller S; Rittner L; Frayne R; Lotufo R Neuroimage; 2018 Apr; 170():482-494. PubMed ID: 28807870 [TBL] [Abstract][Full Text] [Related]
30. Fully automatic segmentation of right and left ventricle on short-axis cardiac MRI images. Budai A; Suhai FI; Csorba K; Toth A; Szabo L; Vago H; Merkely B Comput Med Imaging Graph; 2020 Oct; 85():101786. PubMed ID: 32866695 [TBL] [Abstract][Full Text] [Related]
31. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms. Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085 [TBL] [Abstract][Full Text] [Related]
32. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy. Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345 [TBL] [Abstract][Full Text] [Related]
33. Automated pixel-wise brain tissue segmentation of diffusion-weighted images via machine learning. Ciritsis A; Boss A; Rossi C NMR Biomed; 2018 Jul; 31(7):e3931. PubMed ID: 29697165 [TBL] [Abstract][Full Text] [Related]
34. Dynamic pixel-wise weighting-based fully convolutional neural networks for left ventricle segmentation in short-axis MRI. Wang Z; Xie L; Qi J Magn Reson Imaging; 2020 Feb; 66():131-140. PubMed ID: 31465788 [TBL] [Abstract][Full Text] [Related]
35. Comparative analysis of active contour and convolutional neural network in rapid left-ventricle volume quantification using echocardiographic imaging. Zhu X; Wei Y; Lu Y; Zhao M; Yang K; Wu S; Zhang H; Wong KKL Comput Methods Programs Biomed; 2021 Feb; 199():105914. PubMed ID: 33383330 [TBL] [Abstract][Full Text] [Related]
36. Suggestive annotation of brain MR images with gradient-guided sampling. Dai C; Wang S; Mo Y; Angelini E; Guo Y; Bai W Med Image Anal; 2022 Apr; 77():102373. PubMed ID: 35134636 [TBL] [Abstract][Full Text] [Related]
37. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region. Arabi H; Dowling JA; Burgos N; Han X; Greer PB; Koutsouvelis N; Zaidi H Med Phys; 2018 Nov; 45(11):5218-5233. PubMed ID: 30216462 [TBL] [Abstract][Full Text] [Related]
38. Right Ventricular Segmentation from MRI Using Deep Convolutional Neural Networks. Purmehdi H; Hareendranathan AR; Noga M; Punithakumar K Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4020-4023. PubMed ID: 31946753 [TBL] [Abstract][Full Text] [Related]
39. Convolutional neural network regression for short-axis left ventricle segmentation in cardiac cine MR sequences. Tan LK; Liew YM; Lim E; McLaughlin RA Med Image Anal; 2017 Jul; 39():78-86. PubMed ID: 28437634 [TBL] [Abstract][Full Text] [Related]
40. Constrained-CNN losses for weakly supervised segmentation. Kervadec H; Dolz J; Tang M; Granger E; Boykov Y; Ben Ayed I Med Image Anal; 2019 May; 54():88-99. PubMed ID: 30851541 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]