These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 3316092)
1. Oversynthesis of diacetyl and acetoin in a riboflavin deficient mutant of yeast. Nakajima K; Saito A Int J Vitam Nutr Res; 1987; 57(3):279-83. PubMed ID: 3316092 [TBL] [Abstract][Full Text] [Related]
2. Possibility of diacetyl and related compounds as the 4-carbon compound necessary for the formation of riboflavin in Ashbya gossypii. Nakajima K; Mitsuda H Acta Vitaminol Enzymol; 1984; 6(4):271-82. PubMed ID: 6534171 [TBL] [Abstract][Full Text] [Related]
3. Laboratory-scale production of acetoin plus diacetyl by Enterobacter cloacae ATCC 27613. Gupta KG; Yadav NK; Dhawan S Biotechnol Bioeng; 1978 Dec; 20(12):1895-901. PubMed ID: 728550 [TBL] [Abstract][Full Text] [Related]
4. Studies on the 4-carbon compound needed for the formation of the O-xylene ring of riboflavin. Nakajima K Acta Vitaminol Enzymol; 1985; 7(1-2):25-37. PubMed ID: 4041123 [TBL] [Abstract][Full Text] [Related]
5. [Biosynthesis of flavins and its regulation in the yeast Pichia guilliermondii]. Shavlovsky GM; Lohvynenko EM; Struhovshchykova LM; Kashchenko VE Ukr Biokhim Zh; 1975; 47(5):649-60. PubMed ID: 834 [TBL] [Abstract][Full Text] [Related]
6. Towards diacetyl-less brewers' yeast. Influence of ilv2 and ilv5 mutations. Gjermansen C; Nilsson-Tillgren T; Petersen JG; Kielland-Brandt MC; Sigsgaard P; Holmberg S J Basic Microbiol; 1988; 28(3):175-83. PubMed ID: 3057172 [TBL] [Abstract][Full Text] [Related]
7. Purification and properties of two oxidoreductases catalyzing the enantioselective reduction of diacetyl and other diketones from baker's yeast. Heidlas J; Tressl R Eur J Biochem; 1990 Feb; 188(1):165-74. PubMed ID: 2180695 [TBL] [Abstract][Full Text] [Related]
8. [Detection of phosphorylated pyrimidine precursors of riboflavin in yeasts]. Logvinenko EM; Shavlovskiĭ GM; Zakal'skiĭ AE; Seniuta EZ Biokhimiia; 1980 Jul; 45(7):1284-92. PubMed ID: 7213861 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of a mycobacterial NAD⁺-dependent alcohol dehydrogenase with superior reduction of diacetyl to (S)-acetoin. Takeda M; Anamizu S; Motomatsu S; Chen X; Thapa Chhetri R Biosci Biotechnol Biochem; 2014; 78(11):1879-86. PubMed ID: 25082080 [TBL] [Abstract][Full Text] [Related]
10. Isolation, purification, and study of certain properties of diacetyl(acetoin) reductase in the yeast Saccharomyces vini. Kavadze AV; Rodopulo AK; Shaposhnikov GL Biol Bull Acad Sci USSR; 1979; 6(3):356-61. PubMed ID: 45079 [TBL] [Abstract][Full Text] [Related]
11. [Effect of rib83 mutation on riboflavin biosynthesis and iron assimilation in Pichia guilliermondii]. Stenchuk NN; Kutsiaba VI; Kshanovskaia BV; Fedorovich DV Mikrobiologiia; 2001; 70(6):753-8. PubMed ID: 11785131 [TBL] [Abstract][Full Text] [Related]
12. [Genetic control of riboflavin biosynthesis in Pichia guilliermondii yeasts. The detection of a new regulator gene RIB81]. Shavlovskiĭ GM; Babiak LIa; Sibirnyĭ AA; Logvinenko EM Genetika; 1985 Mar; 21(3):368-74. PubMed ID: 3838729 [TBL] [Abstract][Full Text] [Related]
13. Physiological and biochemical role of the butanediol pathway in Aerobacter (Enterobacter) aerogenes. Johansen L; Bryn K; Stormer FC J Bacteriol; 1975 Sep; 123(3):1124-30. PubMed ID: 239921 [TBL] [Abstract][Full Text] [Related]
14. [Nature of riboflavin precursors in Pichia guilliermondi yeasts]. Logvinenko EM; Shavlovskiĭ GM; Koltun LV; Ksheminskaia GP Mikrobiologiia; 1975; 44(1):48-54. PubMed ID: 1160636 [TBL] [Abstract][Full Text] [Related]
15. Acetoin degradation in Bacillus subtilis by direct oxidative cleavage. López JM; Thoms B; Rehbein H Eur J Biochem; 1975 Sep; 57(2):425-30. PubMed ID: 809287 [TBL] [Abstract][Full Text] [Related]
16. Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. Le Bars D; Yvon M J Appl Microbiol; 2008 Jan; 104(1):171-7. PubMed ID: 17850313 [TBL] [Abstract][Full Text] [Related]
17. A detoxication route for acetaldehyde: metabolism of diacetyl, acetoin, and 2,3-butanediol in liver homogenate and perfused liver of rats. Otsuka M; Mine T; Ohuchi K; Ohmori S J Biochem; 1996 Feb; 119(2):246-51. PubMed ID: 8882713 [TBL] [Abstract][Full Text] [Related]
18. Origin of the ribityl side-chain of riboflavin from the ribose moiety of guanosine triphosphate in Pichia guilliermondii yeast. Miersch J; Logvinenko EM; Zakalsky AE; Shavlovsky GM; Reinbothe H Biochim Biophys Acta; 1978 Oct; 543(3):305-12. PubMed ID: 30490 [TBL] [Abstract][Full Text] [Related]
19. Isolation and properties of Lactococcus lactis subsp. lactis biovar diacetylactis CNRZ 483 mutants producing diacetyl and acetoin from glucose. Boumerdassi H; Monnet C; Desmazeaud M; Corrieu G Appl Environ Microbiol; 1997 Jun; 63(6):2293-9. PubMed ID: 9172349 [TBL] [Abstract][Full Text] [Related]
20. α,β-Dicarbonyl reduction is mediated by the Saccharomyces Old Yellow Enzyme. van Bergen B; Cyr N; Strasser R; Blanchette M; Sheppard JD; Jardim A FEMS Yeast Res; 2016 Aug; 16(5):. PubMed ID: 27400981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]