BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33161058)

  • 1. Something's gotta give: How PCNA alters its structure in response to mutations and the implications on cellular processes.
    Dieckman L
    Prog Biophys Mol Biol; 2021 Aug; 163():46-59. PubMed ID: 33161058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Many Roles of PCNA in Eukaryotic DNA Replication.
    Boehm EM; Gildenberg MS; Washington MT
    Enzymes; 2016; 39():231-54. PubMed ID: 27241932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen.
    Hishiki A; Hashimoto H; Hanafusa T; Kamei K; Ohashi E; Shimizu T; Ohmori H; Sato M
    J Biol Chem; 2009 Apr; 284(16):10552-60. PubMed ID: 19208623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The herpes simplex virus 1 UL36USP deubiquitinase suppresses DNA repair in host cells via deubiquitination of proliferating cell nuclear antigen.
    Dong X; Guan J; Zheng C; Zheng X
    J Biol Chem; 2017 May; 292(20):8472-8483. PubMed ID: 28348081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genetic study based on PCNA-ubiquitin fusions reveals no requirement for PCNA polyubiquitylation in DNA damage tolerance.
    Gervai JZ; Gálicza J; Szeltner Z; Zámborszky J; Szüts D
    DNA Repair (Amst); 2017 Jun; 54():46-54. PubMed ID: 28458162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis.
    Freudenthal BD; Ramaswamy S; Hingorani MM; Washington MT
    Biochemistry; 2008 Dec; 47(50):13354-61. PubMed ID: 19053247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct structural alterations in proliferating cell nuclear antigen block DNA mismatch repair.
    Dieckman LM; Boehm EM; Hingorani MM; Washington MT
    Biochemistry; 2013 Aug; 52(33):5611-9. PubMed ID: 23869605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear dynamics of PCNA in DNA replication and repair.
    Essers J; Theil AF; Baldeyron C; van Cappellen WA; Houtsmuller AB; Kanaar R; Vermeulen W
    Mol Cell Biol; 2005 Nov; 25(21):9350-9. PubMed ID: 16227586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory role of ubiquitin in eukaryotic DNA translesion synthesis.
    Yang K; Weinacht CP; Zhuang Z
    Biochemistry; 2013 May; 52(19):3217-28. PubMed ID: 23634825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of New Mutations at the PCNA Subunit Interface that Block Translesion Synthesis.
    Kondratick CM; Boehm EM; Dieckman LM; Powers KT; Sanchez JC; Mueting SR; Washington MT
    PLoS One; 2016; 11(6):e0157023. PubMed ID: 27258147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of p15(PAF)-PCNA complex and implications for clamp sliding during DNA replication and repair.
    De Biasio A; de Opakua AI; Mortuza GB; Molina R; Cordeiro TN; Castillo F; Villate M; Merino N; Delgado S; Gil-Cartón D; Luque I; Diercks T; Bernadó P; Montoya G; Blanco FJ
    Nat Commun; 2015 Mar; 6():6439. PubMed ID: 25762514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ.
    Dieckman LM; Washington MT
    DNA Repair (Amst); 2013 May; 12(5):367-76. PubMed ID: 23506842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis.
    Park JM; Yang SW; Yu KR; Ka SH; Lee SW; Seol JH; Jeon YJ; Chung CH
    Mol Cell; 2014 May; 54(4):626-38. PubMed ID: 24768535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ubiquitination of PCNA and its essential role in eukaryotic translesion synthesis.
    Chen J; Bozza W; Zhuang Z
    Cell Biochem Biophys; 2011 Jun; 60(1-2):47-60. PubMed ID: 21461937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis.
    Sharma NM; Kochenova OV; Shcherbakova PV
    J Biol Chem; 2011 Sep; 286(38):33557-66. PubMed ID: 21799021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.
    Pustovalova Y; Maciejewski MW; Korzhnev DM
    J Mol Biol; 2013 Sep; 425(17):3091-105. PubMed ID: 23747975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair.
    Ayyagari R; Impellizzeri KJ; Yoder BL; Gary SL; Burgers PM
    Mol Cell Biol; 1995 Aug; 15(8):4420-9. PubMed ID: 7623835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage.
    Guan J; Yu S; Zheng X
    Protein Cell; 2018 Apr; 9(4):365-379. PubMed ID: 28831681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ub-family modifications at the replication fork: Regulating PCNA-interacting components.
    Kirchmaier AL
    FEBS Lett; 2011 Sep; 585(18):2920-8. PubMed ID: 21846465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage.
    Wood A; Garg P; Burgers PM
    J Biol Chem; 2007 Jul; 282(28):20256-63. PubMed ID: 17517887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.