These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 33161086)
1. Dextran-polyethylene glycol cryogels as spongy scaffolds for drug delivery. Pacelli S; Di Muzio L; Paolicelli P; Fortunati V; Petralito S; Trilli J; Casadei MA Int J Biol Macromol; 2021 Jan; 166():1292-1300. PubMed ID: 33161086 [TBL] [Abstract][Full Text] [Related]
2. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Lévesque SG; Lim RM; Shoichet MS Biomaterials; 2005 Dec; 26(35):7436-46. PubMed ID: 16023718 [TBL] [Abstract][Full Text] [Related]
3. Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering. Zhang K; Yang Z; Seitz MP; Jain E ACS Appl Bio Mater; 2024 Sep; 7(9):5925-5938. PubMed ID: 39135543 [TBL] [Abstract][Full Text] [Related]
4. Macroporous starPEG-heparin cryogels. Welzel PB; Grimmer M; Renneberg C; Naujox L; Zschoche S; Freudenberg U; Werner C Biomacromolecules; 2012 Aug; 13(8):2349-58. PubMed ID: 22758219 [TBL] [Abstract][Full Text] [Related]
5. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
6. Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: an animal model. Bölgen N; Vargel I; Korkusuz P; Güzel E; Plieva F; Galaev I; Matiasson B; Pişkin E J Biomed Mater Res A; 2009 Oct; 91(1):60-8. PubMed ID: 18690660 [TBL] [Abstract][Full Text] [Related]
7. Macroporous elastic cryogels based on platelet lysate and oxidized dextran as tissue engineering scaffold: In vitro and in vivo evaluations. Şeker Ş; Elçin AE; Elçin YM Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110703. PubMed ID: 32204017 [TBL] [Abstract][Full Text] [Related]
8. Gelatin cryogels crosslinked with oxidized dextran and containing freshly formed hydroxyapatite as potential bone tissue-engineering scaffolds. Inci I; Kirsebom H; Galaev IY; Mattiasson B; Piskin E J Tissue Eng Regen Med; 2013 Jul; 7(7):584-8. PubMed ID: 22733656 [TBL] [Abstract][Full Text] [Related]
9. New biodegradable dextran-based hydrogels for protein delivery: Synthesis and characterization. Pacelli S; Paolicelli P; Casadei MA Carbohydr Polym; 2015 Aug; 126():208-14. PubMed ID: 25933541 [TBL] [Abstract][Full Text] [Related]
10. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Hwang Y; Sangaj N; Varghese S Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791 [TBL] [Abstract][Full Text] [Related]
11. Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation. Welzel PB; Friedrichs J; Grimmer M; Vogler S; Freudenberg U; Werner C Adv Healthc Mater; 2014 Nov; 3(11):1849-53. PubMed ID: 24729299 [TBL] [Abstract][Full Text] [Related]
12. Thiol-Reactive Clickable Cryogels: Importance of Macroporosity and Linkers on Biomolecular Immobilization. Chambre L; Maouati H; Oz Y; Sanyal R; Sanyal A Bioconjug Chem; 2020 Sep; 31(9):2116-2124. PubMed ID: 32786374 [TBL] [Abstract][Full Text] [Related]
13. Hooked on Cryogels: A Carbamate Linker Based Depot for Slow Drug Release. Aydin D; Arslan M; Sanyal A; Sanyal R Bioconjug Chem; 2017 May; 28(5):1443-1451. PubMed ID: 28441501 [TBL] [Abstract][Full Text] [Related]
14. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E J Tissue Eng Regen Med; 2011 Nov; 5(10):770-9. PubMed ID: 22002920 [TBL] [Abstract][Full Text] [Related]
15. Efficacy of supermacroporous poly(ethylene glycol)-gelatin cryogel matrix for soft tissue engineering applications. Sharma A; Bhat S; Nayak V; Kumar A Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():298-312. PubMed ID: 25492201 [TBL] [Abstract][Full Text] [Related]
16. Smart Macroporous IPN Hydrogels Responsive to pH, Temperature, and Ionic Strength: Synthesis, Characterization, and Evaluation of Controlled Release of Drugs. Dragan ES; Cocarta AI ACS Appl Mater Interfaces; 2016 May; 8(19):12018-30. PubMed ID: 27115698 [TBL] [Abstract][Full Text] [Related]
17. Superelastic and pH-Responsive Degradable Dendrimer Cryogels Prepared by Cryo-aza-Michael Addition Reaction. Wang J; Yang H Sci Rep; 2018 May; 8(1):7155. PubMed ID: 29740011 [TBL] [Abstract][Full Text] [Related]
18. A novel cell encapsulatable cryogel (CECG) with macro-porous structures and high permeability: a three-dimensional cell culture scaffold for enhanced cell adhesion and proliferation. Fan C; Ling Y; Deng W; Xue J; Sun P; Wang DA Biomed Mater; 2019 Jul; 14(5):055006. PubMed ID: 31269472 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional cryogels for biomedical applications. Razavi M; Qiao Y; Thakor AS J Biomed Mater Res A; 2019 Dec; 107(12):2736-2755. PubMed ID: 31408265 [TBL] [Abstract][Full Text] [Related]
20. Thermoresponsive poly(N-vinylcaprolactam) cryogels: synthesis and its biophysical evaluation for tissue engineering applications. Srivastava A; Kumar A J Mater Sci Mater Med; 2010 Nov; 21(11):2937-45. PubMed ID: 20625836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]