These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

660 related articles for article (PubMed ID: 33161365)

  • 1. Highly selective chemosensor for reactive carbonyl species based on simple 1,8-diaminonaphthalene.
    Jana A; Joseph MM; Munan S; Maiti KK; Samanta A
    J Photochem Photobiol B; 2020 Dec; 213():112076. PubMed ID: 33161365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ICT based water-soluble fluorescent probe for discriminating mono and dicarbonyl species and analysis in foods.
    Jana A; Baruah M; Munan S; Samanta A
    Chem Commun (Camb); 2021 Jun; 57(52):6380-6383. PubMed ID: 34081065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-Based Fluorescent Probes for Sensing and Imaging of Reactive Carbonyl Species (RCSs).
    Jana A; Baruah M; Samanta A
    Chem Asian J; 2022 Apr; 17(8):e202200044. PubMed ID: 35239996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorophore-Promoted Facile Deprotonation and Exocyclic Five-Membered Ring Cyclization for Selective and Dynamic Tracking of Labile Glyoxals.
    Xu H; Liu Q; Song X; Wang C; Wang X; Ma S; Wang X; Feng Y; Meng X; Liu X; Wang W; Lou K
    Anal Chem; 2020 Oct; 92(20):13829-13838. PubMed ID: 32959643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response surface methodology as optimization strategy for reduction of reactive carbonyl species in foods by means of phenolic chemistry.
    Kokkinidou S; Peterson DG
    Food Funct; 2013 Jul; 4(7):1093-104. PubMed ID: 23681170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal.
    Li X; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2014 Dec; 62(50):12152-8. PubMed ID: 25412188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of glyoxal and methylglyoxal in serum by UHPLC coupled with fluorescence detection.
    Dhananjayan K; Irrgang F; Raju R; Harman DG; Moran C; Srikanth V; Münch G
    Anal Biochem; 2019 May; 573():51-66. PubMed ID: 30796906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Ratiometric Fluorescence Probe for Selective Detection of ex vivo Methylglyoxal in Diabetic Mice.
    Xie Q; Zhan Y; Guo L; Hao H; Shi X; Yang J; Luo F; Qiu B; Lin Z
    ChemistryOpen; 2022 May; 11(5):e202200055. PubMed ID: 35543213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitroxidative chemistry interferes with fluorescent probe chemistry: implications for nitric oxide detection using 2,3-diaminonaphthalene.
    Hu TM; Chiu SJ; Hsu YM
    Biochem Biophys Res Commun; 2014 Aug; 451(2):196-201. PubMed ID: 25078618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tea polyphenol (-)-epigallocatechin-3-gallate: a new trapping agent of reactive dicarbonyl species.
    Sang S; Shao X; Bai N; Lo CY; Yang CS; Ho CT
    Chem Res Toxicol; 2007 Dec; 20(12):1862-70. PubMed ID: 18001060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Highly Selective Two-Photon Probe for Methylglyoxal and its Applications in Living Cells, Tissues, and Zebrafish.
    Gao S; Tang Y; Lin W
    J Fluoresc; 2019 Jan; 29(1):155-163. PubMed ID: 30417249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method to produce fully characterized ubiquitin covalently modified by 4-hydroxy-nonenal, glyoxal, methylglyoxal, and malondialdehyde.
    Colzani M; Criscuolo A; Casali G; Carini M; Aldini G
    Free Radic Res; 2016; 50(3):328-36. PubMed ID: 26554438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flavour chemistry of methylglyoxal and glyoxal.
    Wang Y; Ho CT
    Chem Soc Rev; 2012 Jun; 41(11):4140-9. PubMed ID: 22508009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single benzene fluorescent probe for efficient formaldehyde sensing in living cells using glutathione as an amplifier.
    Jana A; Joseph MM; Munan S; K S; Maiti KK; Samanta A
    J Photochem Photobiol B; 2021 Jan; 214():112091. PubMed ID: 33285487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical assay for nitrite and nitrosothiol as an alternative to the Griess assay or the 2,3-diaminonaphthalene assay.
    Shen Y; Zhang Q; Qian X; Yang Y
    Anal Chem; 2015 Jan; 87(2):1274-80. PubMed ID: 25519711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and characterization of reaction products of 5-hydroxytryptamine with methylglyoxal and glyoxal by liquid chromatography/tandem mass spectrometry.
    Sai Sachin L; Nagarjuna Chary R; Pavankumar P; Prabhakar S
    Rapid Commun Mass Spectrom; 2018 Sep; 32(17):1529-1539. PubMed ID: 29874403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Comparison of bioactive aldehydes modifying action on human albumin].
    Krysiuk IP; Knaub AIa; Shandrenko SH
    Ukr Biochem J; 2014; 86(2):68-78. PubMed ID: 24868913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions.
    Lo CY; Li S; Tan D; Pan MH; Sang S; Ho CT
    Mol Nutr Food Res; 2006 Dec; 50(12):1118-28. PubMed ID: 17103374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation.
    Ruggiero-Lopez D; Lecomte M; Moinet G; Patereau G; Lagarde M; Wiernsperger N
    Biochem Pharmacol; 1999 Dec; 58(11):1765-73. PubMed ID: 10571251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.