BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33161773)

  • 1. Orthostatic Hypertension and Intensive Blood Pressure Control; Post-Hoc Analyses of SPRINT.
    Rahman M; Pradhan N; Chen Z; Kanthety R; Townsend RR; Tatsuoka C; Wright JT
    Hypertension; 2021 Jan; 77(1):49-58. PubMed ID: 33161773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthostatic Hypotension, Hypertension Treatment, and Cardiovascular Disease: An Individual Participant Meta-Analysis.
    Juraschek SP; Hu JR; Cluett JL; Ishak AM; Mita C; Lipsitz LA; Appel LJ; Beckett NS; Coleman RL; Cushman WC; Davis BR; Grandits G; Holman RR; Miller ER; Peters R; Staessen JA; Taylor AA; Thijs L; Wright JT; Mukamal KJ
    JAMA; 2023 Oct; 330(15):1459-1471. PubMed ID: 37847274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between orthostatic blood pressure changes and intensive blood pressure management in patients with hypertension.
    Pei J; Zhang H; Li Y; Yan J; Zheng K; Wang X; Zheng XL; Hu X
    Heart; 2022 Dec; 109(2):111-118. PubMed ID: 36007937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Risk of Harm Associated With Intensive Blood Pressure Management Among Patients With Hypertension Who Smoke: A Secondary Analysis of the Systolic Blood Pressure Intervention Trial.
    Scarpa J; Bruzelius E; Doupe P; Le M; Faghmous J; Baum A
    JAMA Netw Open; 2019 Mar; 2(3):e190005. PubMed ID: 30848803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Intensive Blood Pressure Lowering on Left Ventricular Hypertrophy in Patients With Hypertension: SPRINT (Systolic Blood Pressure Intervention Trial).
    Soliman EZ; Ambrosius WT; Cushman WC; Zhang ZM; Bates JT; Neyra JA; Carson TY; Tamariz L; Ghazi L; Cho ME; Shapiro BP; He J; Fine LJ; Lewis CE;
    Circulation; 2017 Aug; 136(5):440-450. PubMed ID: 28512184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orthostatic Hypotension in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) Blood Pressure Trial: Prevalence, Incidence, and Prognostic Significance.
    Fleg JL; Evans GW; Margolis KL; Barzilay J; Basile JN; Bigger JT; Cutler JA; Grimm R; Pedley C; Peterson K; Pop-Busui R; Sperl-Hillen J; Cushman WC
    Hypertension; 2016 Oct; 68(4):888-95. PubMed ID: 27504006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthostatic changes in systolic blood pressure among SPRINT participants at baseline.
    Townsend RR; Chang TI; Cohen DL; Cushman WC; Evans GW; Glasser SP; Haley WE; Olney C; Oparil S; Del Pinto R; Pisoni R; Taylor AA; Umanath K; Wright JT; Yeboah J;
    J Am Soc Hypertens; 2016 Nov; 10(11):847-856. PubMed ID: 27665708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Long-term Benefit of Intensive Blood Pressure Control on Residual Life Span: Secondary Analysis of the Systolic Blood Pressure Intervention Trial (SPRINT).
    Vaduganathan M; Claggett BL; Juraschek SP; Solomon SD
    JAMA Cardiol; 2020 May; 5(5):576-581. PubMed ID: 32101262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association Between Baseline Diastolic Blood Pressure and the Efficacy of Intensive vs Standard Blood Pressure-Lowering Therapy.
    Foy AJ; Filippone EJ; Schaefer E; Nudy M; Ruzieh M; Dyer AM; Chinchilli VM; Naccarelli GV
    JAMA Netw Open; 2021 Oct; 4(10):e2128980. PubMed ID: 34668944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Association between HDL-C and intensive blood pressure control in patients with hypertension: A post-hoc analysis of SPRINT.
    Liu R; Cheng W
    J Clin Hypertens (Greenwich); 2024 Mar; 26(3):225-234. PubMed ID: 38318688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthostatic blood pressure changes do not influence cognitive outcomes following intensive blood pressure control.
    Jiang C; Zhao M; Li M; Wang Z; Bai Y; Guo H; Li S; Lai Y; Wang Y; Gao M; He L; Guo X; Li S; Liu N; Jiang C; Tang R; Long D; Sang C; Du X; Dong J; Anderson CS; Ma C
    J Intern Med; 2024 Apr; 295(4):557-568. PubMed ID: 38111091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of blood pressure-lowering treatment by the levels of baseline Framingham risk score: A post hoc analysis of the Systolic Blood Pressure Intervention Trial (SPRINT).
    Zhang L; Sun X; Liao L; Zhang S; Zhou H; Zhong X; Zhuang X; Liao X
    J Clin Hypertens (Greenwich); 2019 Dec; 21(12):1813-1820. PubMed ID: 31670874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of baseline systolic blood pressure on the relationship between intensive blood pressure control and cardiovascular outcomes in the Systolic Blood Pressure Intervention Trial (SPRINT).
    Sun X; Guo Y; Nie Z; Cheng J; Zhou H; Zhong X; Zhang S; Du Z; Zhuang X; Liao X
    Clin Res Cardiol; 2019 Mar; 108(3):273-281. PubMed ID: 30167807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intensive Versus Standard Blood Pressure Control in SPRINT-Eligible Participants of ACCORD-BP.
    Buckley LF; Dixon DL; Wohlford GF; Wijesinghe DS; Baker WL; Van Tassell BW
    Diabetes Care; 2017 Dec; 40(12):1733-1738. PubMed ID: 28947569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimated glomerular filtration rate and the risk-benefit profile of intensive blood pressure control amongst nondiabetic patients: a post hoc analysis of a randomized clinical trial.
    Obi Y; Kalantar-Zadeh K; Shintani A; Kovesdy CP; Hamano T
    J Intern Med; 2018 Mar; 283(3):314-327. PubMed ID: 29044764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Optimal Diastolic Blood Pressure Range Among Adults With Treated Systolic Blood Pressure Less Than 130 mm Hg.
    Li J; Somers VK; Gao X; Chen Z; Ju J; Lin Q; Mohamed EA; Karim S; Xu H; Zhang L
    JAMA Netw Open; 2021 Feb; 4(2):e2037554. PubMed ID: 33595663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benefit and harm of intensive blood pressure treatment: Derivation and validation of risk models using data from the SPRINT and ACCORD trials.
    Basu S; Sussman JB; Rigdon J; Steimle L; Denton BT; Hayward RA
    PLoS Med; 2017 Oct; 14(10):e1002410. PubMed ID: 29040268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of Early Decline in eGFR due to Intensive BP Control for Cardiovascular Outcomes in SPRINT.
    Beddhu S; Shen J; Cheung AK; Kimmel PL; Chertow GM; Wei G; Boucher RE; Chonchol M; Arman F; Campbell RC; Contreras G; Dwyer JP; Freedman BI; Ix JH; Kirchner K; Papademetriou V; Pisoni R; Rocco MV; Whelton PK; Greene T
    J Am Soc Nephrol; 2019 Aug; 30(8):1523-1533. PubMed ID: 31324734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Intensive Blood Pressure Treatment on Orthostatic Hypotension : A Systematic Review and Individual Participant-based Meta-analysis.
    Juraschek SP; Hu JR; Cluett JL; Ishak A; Mita C; Lipsitz LA; Appel LJ; Beckett NS; Coleman RL; Cushman WC; Davis BR; Grandits G; Holman RR; Miller ER; Peters R; Staessen JA; Taylor AA; Thijs L; Wright JT; Mukamal KJ
    Ann Intern Med; 2021 Jan; 174(1):58-68. PubMed ID: 32909814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood pressure variability predicts adverse events and cardiovascular outcomes in SPRINT.
    Mezue K; Goyal A; Pressman GS; Matthew R; Horrow JC; Rangaswami J
    J Clin Hypertens (Greenwich); 2018 Sep; 20(9):1247-1252. PubMed ID: 29984884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.