These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Use of reduced sulfur compounds by Beggiatoa sp. Nelson DC; Castenholz RW J Bacteriol; 1981 Jul; 147(1):140-54. PubMed ID: 7240091 [TBL] [Abstract][Full Text] [Related]
3. Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture. Kamp A; Stief P; Schulz-Vogt HN Appl Environ Microbiol; 2006 Jul; 72(7):4755-60. PubMed ID: 16820468 [TBL] [Abstract][Full Text] [Related]
4. Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain. Kreutzmann AC; Schulz-Vogt HN Appl Environ Microbiol; 2016 Apr; 82(8):2527-36. PubMed ID: 26896131 [TBL] [Abstract][Full Text] [Related]
5. Polysulfides as intermediates in the oxidation of sulfide to sulfate by Beggiatoa spp. Berg JS; Schwedt A; Kreutzmann AC; Kuypers MM; Milucka J Appl Environ Microbiol; 2014 Jan; 80(2):629-36. PubMed ID: 24212585 [TBL] [Abstract][Full Text] [Related]
6. Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass. Mora M; López LR; Lafuente J; Pérez J; Kleerebezem R; van Loosdrecht MC; Gamisans X; Gabriel D Water Res; 2016 Feb; 89():282-92. PubMed ID: 26704759 [TBL] [Abstract][Full Text] [Related]
7. Sulfur respiration in a marine chemolithoautotrophic beggiatoa strain. Schwedt A; Kreutzmann AC; Polerecky L; Schulz-Vogt HN Front Microbiol; 2011; 2():276. PubMed ID: 22291687 [TBL] [Abstract][Full Text] [Related]
10. Reduction of sulfur by spirillum 5175 and syntrophism with Chlorobium. Wolfe RS; Penning N Appl Environ Microbiol; 1977 Feb; 33(2):427-33. PubMed ID: 848960 [TBL] [Abstract][Full Text] [Related]
11. Anoxic sulfide oxidation in wastewater of sewer networks. Yang W; Vollertsen J; Hvitved-Jacobsen T Water Sci Technol; 2005; 52(3):191-9. PubMed ID: 16206859 [TBL] [Abstract][Full Text] [Related]
13. Large sulfur bacteria and the formation of phosphorite. Schulz HN; Schulz HD Science; 2005 Jan; 307(5708):416-8. PubMed ID: 15662012 [TBL] [Abstract][Full Text] [Related]
14. Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. Sorokin DY; Kublanov IV; Gavrilov SN; Rojo D; Roman P; Golyshin PN; Slepak VZ; Smedile F; Ferrer M; Messina E; La Cono V; Yakimov MM ISME J; 2016 Jan; 10(1):240-52. PubMed ID: 25978546 [TBL] [Abstract][Full Text] [Related]
15. Sulfide-driven microbial electrosynthesis. Gong Y; Ebrahim A; Feist AM; Embree M; Zhang T; Lovley D; Zengler K Environ Sci Technol; 2013 Jan; 47(1):568-73. PubMed ID: 23252645 [TBL] [Abstract][Full Text] [Related]
16. Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers-effects of pH and temperature. Nielsen AH; Vollertsen J; Hvitved-Jacobsen T Water Environ Res; 2006 Mar; 78(3):275-83. PubMed ID: 16629268 [TBL] [Abstract][Full Text] [Related]
17. Stable sulfur and oxygen isotope fractionation of anoxic sulfide oxidation by two different enzymatic pathways. Poser A; Vogt C; Knöller K; Ahlheim J; Weiss H; Kleinsteuber S; Richnow HH Environ Sci Technol; 2014 Aug; 48(16):9094-102. PubMed ID: 25003498 [TBL] [Abstract][Full Text] [Related]
18. Light-dependent sulfide oxidation in the anoxic zone of the Chesapeake Bay can be explained by small populations of phototrophic bacteria. Findlay AJ; Bennett AJ; Hanson TE; Luther GW Appl Environ Microbiol; 2015 Nov; 81(21):7560-9. PubMed ID: 26296727 [TBL] [Abstract][Full Text] [Related]
19. Uptake rates of oxygen and sulfide measured with individual Thiomargarita namibiensis cells by using microelectrodes. Schulz HN; De Beer D Appl Environ Microbiol; 2002 Nov; 68(11):5746-9. PubMed ID: 12406774 [TBL] [Abstract][Full Text] [Related]
20. Impacts of reduced sulfur components on active and resting ammonia oxidizers. Sears K; Alleman JE; Barnard JL; Oleszkiewicz JA J Ind Microbiol Biotechnol; 2004 Sep; 31(8):369-78. PubMed ID: 15316831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]