These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 33161890)
1. Spatial orientation in virtual environment compared to real-world. Pastel S; Chen CH; Bürger D; Naujoks M; Martin LF; Petri K; Witte K J Mot Behav; 2021; 53(6):693-706. PubMed ID: 33161890 [TBL] [Abstract][Full Text] [Related]
2. Virtual reality in neurologic rehabilitation of spatial disorientation. Kober SE; Wood G; Hofer D; Kreuzig W; Kiefer M; Neuper C J Neuroeng Rehabil; 2013 Feb; 10():17. PubMed ID: 23394289 [TBL] [Abstract][Full Text] [Related]
3. Virtual Reality Systems as an Orientation Aid for People Who Are Blind to Acquire New Spatial Information. Lahav O Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214209 [TBL] [Abstract][Full Text] [Related]
4. The Suite for the Assessment of Low-Level cues on Orientation (SALLO): The psychophysics of spatial orientation in virtual reality. Esposito D; Bollini A; Gori M Behav Res Methods; 2024 Aug; 56(5):5214-5231. PubMed ID: 37932625 [TBL] [Abstract][Full Text] [Related]
5. Virtual reality assessment of walking and non-walking space in men and women with virtual reality-based tasks. León I; Tascón L; Ortells-Pareja JJ; Cimadevilla JM PLoS One; 2018; 13(10):e0204995. PubMed ID: 30278083 [TBL] [Abstract][Full Text] [Related]
6. Visual Perceptual Confidence: Exploring Discrepancies Between Self-reported and Actual Distance Perception In Virtual Reality. Hmaiti Y; Maslych M; Ghasemaghaei A; Ghamandi RK; LaViola JJ IEEE Trans Vis Comput Graph; 2024 Nov; 30(11):7245-7254. PubMed ID: 39255097 [TBL] [Abstract][Full Text] [Related]
7. Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Cushman LA; Stein K; Duffy CJ Neurology; 2008 Sep; 71(12):888-95. PubMed ID: 18794491 [TBL] [Abstract][Full Text] [Related]
8. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind. Lahav O; Gedalevitz H; Battersby S; Brown D; Evett L; Merritt P Disabil Rehabil; 2018 May; 40(9):1072-1084. PubMed ID: 28637136 [TBL] [Abstract][Full Text] [Related]
9. Egocentric Distance Perception: A Comparative Study Investigating Differences Between Real and Virtual Environments. Feldstein IT; Kölsch FM; Konrad R Perception; 2020 Sep; 49(9):940-967. PubMed ID: 33002392 [TBL] [Abstract][Full Text] [Related]
10. Estimating distance in real and virtual environments: Does order make a difference? Ziemer CJ; Plumert JM; Cremer JF; Kearney JK Atten Percept Psychophys; 2009 Jul; 71(5):1095-106. PubMed ID: 19525540 [TBL] [Abstract][Full Text] [Related]
11. Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task. Ranjbar Pouya O; Byagowi A; Kelly DM; Moussavi Z Q J Exp Psychol (Hove); 2017 Jul; 70(7):1406-1419. PubMed ID: 27156658 [TBL] [Abstract][Full Text] [Related]
12. Equivalence of real-world and virtual-reality route learning: a pilot study. Lloyd J; Persaud NV; Powell TE Cyberpsychol Behav; 2009 Aug; 12(4):423-7. PubMed ID: 19514820 [TBL] [Abstract][Full Text] [Related]
13. Orientation Perception in Real and Virtual Environments. Jones JA; Hopper JE; Bolas MT; Krum DM IEEE Trans Vis Comput Graph; 2019 May; 25(5):2050-2060. PubMed ID: 30762557 [TBL] [Abstract][Full Text] [Related]
14. Virtual reality as a tool for balance research: Eyes open body sway is reproduced in photo-realistic, but not in abstract virtual scenes. Assländer L; Streuber S PLoS One; 2020; 15(10):e0241479. PubMed ID: 33119679 [TBL] [Abstract][Full Text] [Related]
15. Design of a Virtual Reality Navigational (VRN) experiment for assessment of egocentric spatial cognition. Byagowi A; Moussavi Z Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4812-5. PubMed ID: 23367004 [TBL] [Abstract][Full Text] [Related]
16. Spatial updating in superimposed real and virtual environments. Wan XI; Wang RF; Crowell JA Atten Percept Psychophys; 2009 Jan; 71(1):42-51. PubMed ID: 19304595 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a Motion Platform Combined with an Acoustic Virtual Reality Tool: a Spatial Orientation Test in Sighted and Visually Impaired People. Zanchi S; Cuturi LF; Sandini G; Gori M Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6078-6081. PubMed ID: 34892503 [TBL] [Abstract][Full Text] [Related]
18. Visual distance estimation in static compared to moving virtual scenes. Frenz H; Lappe M Span J Psychol; 2006 Nov; 9(2):321-31. PubMed ID: 17120711 [TBL] [Abstract][Full Text] [Related]
19. Revisiting the effect of quality of graphics on distance judgments in virtual environments: a comparison of verbal reports and blind walking. Kunz BR; Wouters L; Smith D; Thompson WB; Creem-Regehr SH Atten Percept Psychophys; 2009 Aug; 71(6):1284-93. PubMed ID: 19633344 [TBL] [Abstract][Full Text] [Related]
20. Spatial Presence, Performance, and Behavior between Real, Remote, and Virtual Immersive Environments. Khenak N; Vezien J; Bourdot P IEEE Trans Vis Comput Graph; 2020 Dec; 26(12):3467-3478. PubMed ID: 32976103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]