These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33161890)

  • 21. Orientation in Virtual Reality Does Not Fully Measure Up to the Real-World.
    Kimura K; Reichert JF; Olson A; Pouya OR; Wang X; Moussavi Z; Kelly DM
    Sci Rep; 2017 Dec; 7(1):18109. PubMed ID: 29273759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orientation and metacognition in virtual space.
    Tenbrink T; Salwiczek LH
    J Exp Psychol Hum Percept Perform; 2016 May; 42(5):683-705. PubMed ID: 26594879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Moving through virtual reality without moving?
    Riecke BE; Sigurdarson S; Milne AP
    Cogn Process; 2012 Aug; 13 Suppl 1():S293-7. PubMed ID: 22806672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distance Estimation in Virtual Reality Is Affected by Both the Virtual and the Real-World Environments.
    Zhang J; Yang X; Jin Z; Li L
    Iperception; 2021; 12(3):20416695211023956. PubMed ID: 34211686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M
    IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Auditory Feedback for Navigation with Echoes in Virtual Environments: Training Procedure and Orientation Strategies.
    Andreasen A; Geronazzo M; Nilsson NC; Zovnercuka J; Konovalov K; Serafin S
    IEEE Trans Vis Comput Graph; 2019 May; 25(5):1876-1886. PubMed ID: 30794514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of reward learning on visual attention and eye movements in a naturalistic environment: A virtual reality study.
    Bourgeois A; Badier E; Baron N; Carruzzo F; Vuilleumier P
    PLoS One; 2018; 13(12):e0207990. PubMed ID: 30517170
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Orientation Preferences and Motion Sickness Induced in a Virtual Reality Environment.
    Chen W; Chao JG; Zhang Y; Wang JK; Chen XW; Tan C
    Aerosp Med Hum Perform; 2017 Oct; 88(10):903-910. PubMed ID: 28923138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Individual differences in teleporting through virtual environments.
    Cherep LA; Kelly JW; Miller A; Lim AF; Gilbert SB
    J Exp Psychol Appl; 2023 Mar; 29(1):111-123. PubMed ID: 34990154
    [TBL] [Abstract][Full Text] [Related]  

  • 31. More than just perception-action recalibration: walking through a virtual environment causes rescaling of perceived space.
    Kelly JW; Donaldson LS; Sjolund LA; Freiberg JB
    Atten Percept Psychophys; 2013 Oct; 75(7):1473-85. PubMed ID: 23839015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The interaction of spatial ability and motor learning in the transfer of training from a simulator to a real task.
    Tracey MR; Lathan CE
    Stud Health Technol Inform; 2001; 81():521-7. PubMed ID: 11317801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Depth perception in virtual reality: distance estimations in peri- and extrapersonal space.
    Armbrüster C; Wolter M; Kuhlen T; Spijkers W; Fimm B
    Cyberpsychol Behav; 2008 Feb; 11(1):9-15. PubMed ID: 18275307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring egocentric distance perception in virtual reality: Influence of methodologies, locomotion and translation gains.
    Maruhn P; Schneider S; Bengler K
    PLoS One; 2019; 14(10):e0224651. PubMed ID: 31671138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manipulating perception versus action in recalibration tasks.
    Ziemer CJ; Branson MJ; Chihak BJ; Kearney JK; Cremer JF; Plumert JM
    Atten Percept Psychophys; 2013 Aug; 75(6):1260-74. PubMed ID: 23715972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociating position and heading estimations: rotated visual orientation cues perceived after walking reset headings but not positions.
    Mou W; Zhang L
    Cognition; 2014 Dec; 133(3):553-71. PubMed ID: 25215931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D virtual reality vs. 2D desktop registration user interface comparison.
    Bueckle A; Buehling K; Shih PC; Börner K
    PLoS One; 2021; 16(10):e0258103. PubMed ID: 34705835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wayfinding through an unfamiliar environment.
    Boumenir Y; Georges F; Valentin J; Rebillard G; Dresp-Langley B
    Percept Mot Skills; 2010 Dec; 111(3):829-47. PubMed ID: 21319622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immersive medium for early clinical exposure - knowledge acquisition, spatial orientation and the unexpected role of annotation in 360° VR photos.
    Speidel R; Schneider A; Walter S; Grab-Kroll C; Oechsner W
    GMS J Med Educ; 2023; 40(1):Doc8. PubMed ID: 36923314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task.
    Grewe P; Lahr D; Kohsik A; Dyck E; Markowitsch HJ; Bien CG; Botsch M; Piefke M
    Epilepsy Behav; 2014 Feb; 31():57-66. PubMed ID: 24361763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.