BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 33162076)

  • 1. Bias in genomic predictions by mating practices for linear type traits in a large-scale genomic evaluation.
    Tsuruta S; Lawlor TJ; Lourenco DAL; Misztal I
    J Dairy Sci; 2021 Jan; 104(1):662-677. PubMed ID: 33162076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling bias in genomic breeding values for young genotyped bulls.
    Tsuruta S; Lourenco DAL; Masuda Y; Misztal I; Lawlor TJ
    J Dairy Sci; 2019 Nov; 102(11):9956-9970. PubMed ID: 31495630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differing genetic trend estimates from traditional and genomic evaluations of genotyped animals as evidence of preselection bias in US Holsteins.
    Masuda Y; VanRaden PM; Misztal I; Lawlor TJ
    J Dairy Sci; 2018 Jun; 101(6):5194-5206. PubMed ID: 29573806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of single-step single nucleotide polymorphism best linear unbiased predictor model with unknown-parent groups for type traits in Japanese Holsteins.
    Osawa T; Masuda Y; Saburi J; Hirumachi K
    J Dairy Sci; 2023 Jul; 106(7):4847-4859. PubMed ID: 37268563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle.
    Guarini AR; Lourenco DAL; Brito LF; Sargolzaei M; Baes CF; Miglior F; Misztal I; Schenkel FS
    J Dairy Sci; 2018 Sep; 101(9):8076-8086. PubMed ID: 29935829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are evaluations on young genotyped animals benefiting from the past generations?
    Lourenco DA; Misztal I; Tsuruta S; Aguilar I; Lawlor TJ; Forni S; Weller JI
    J Dairy Sci; 2014; 97(6):3930-42. PubMed ID: 24679931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of using cow genomic information on accuracy and bias of genomic breeding values in a simulated Holstein dairy cattle population.
    Dehnavi E; Mahyari SA; Schenkel FS; Sargolzaei M
    J Dairy Sci; 2018 Jun; 101(6):5166-5176. PubMed ID: 29605309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correcting for base-population differences and unknown parent groups in single-step genomic predictions of Norwegian Red cattle.
    Belay TK; Eikje LS; Gjuvsland AB; Nordbø Ø; Tribout T; Meuwissen T
    J Anim Sci; 2022 Sep; 100(9):. PubMed ID: 35752161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins.
    Tsuruta S; Misztal I; Aguilar I; Lawlor TJ
    J Dairy Sci; 2011 Aug; 94(8):4198-204. PubMed ID: 21787955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical implications for genetic modeling in the genomics era.
    VanRaden PM
    J Dairy Sci; 2016 Mar; 99(3):2405-2412. PubMed ID: 26778313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of evaluation bias caused by genomic preselection.
    Tyrisevä AM; Mäntysaari EA; Jakobsen J; Aamand GP; Dürr J; Fikse WF; Lidauer MH
    J Dairy Sci; 2018 Apr; 101(4):3155-3163. PubMed ID: 29397162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in genetic trends in US dairy cattle since the implementation of genomic selection.
    Guinan FL; Wiggans GR; Norman HD; Dürr JW; Cole JB; Van Tassell CP; Misztal I; Lourenco D
    J Dairy Sci; 2023 Feb; 106(2):1110-1129. PubMed ID: 36494224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Including overseas performance information in genomic evaluations of Australian dairy cattle.
    Haile-Mariam M; Pryce JE; Schrooten C; Hayes BJ
    J Dairy Sci; 2015 May; 98(5):3443-59. PubMed ID: 25771052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mating programs including genomic relationships and dominance effects.
    Sun C; VanRaden PM; O'Connell JR; Weigel KA; Gianola D
    J Dairy Sci; 2013; 96(12):8014-23. PubMed ID: 24119810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symposium review: Single-step genomic evaluations in dairy cattle.
    Mäntysaari EA; Koivula M; Strandén I
    J Dairy Sci; 2020 Jun; 103(6):5314-5326. PubMed ID: 32331883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assigning unknown parent groups to reduce bias in genomic evaluations of final score in US Holsteins.
    Tsuruta S; Misztal I; Lourenco DA; Lawlor TJ
    J Dairy Sci; 2014 Sep; 97(9):5814-21. PubMed ID: 24997668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mating advice system in dairy cattle incorporating genomic information.
    Carthy TR; McCarthy J; Berry DP
    J Dairy Sci; 2019 Sep; 102(9):8210-8220. PubMed ID: 31229287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using genomics to enhance selection of novel traits in North American dairy cattle.
    Chesnais JP; Cooper TA; Wiggans GR; Sargolzaei M; Pryce JE; Miglior F
    J Dairy Sci; 2016 Mar; 99(3):2413-2427. PubMed ID: 26778318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assortative mating biases marker-based heritability estimators.
    Border R; O'Rourke S; de Candia T; Goddard ME; Visscher PM; Yengo L; Jones M; Keller MC
    Nat Commun; 2022 Feb; 13(1):660. PubMed ID: 35115518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.