These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 33162132)

  • 1. Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation.
    Hou T; Zhao J; Lei Z; Shimizu K; Zhang Z
    Sci Total Environ; 2021 Mar; 761():143234. PubMed ID: 33162132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supplementation of KOH to improve salt tolerance of methanogenesis in the two-stage anaerobic digestion of food waste using pre-acclimated anaerobically digested sludge by air-nanobubble water.
    Hou T; Zhao J; Lei Z; Shimizu K; Zhang Z
    Bioresour Technol; 2022 Feb; 346():126360. PubMed ID: 34801723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced hydrolysis of waste activated sludge for methane production via anaerobic digestion under N
    Yang X; Nie J; Wang D; Zhao Z; Kobayashi M; Adachi Y; Shimizu K; Lei Z; Zhang Z
    Sci Total Environ; 2019 Nov; 693():133524. PubMed ID: 31374494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced hydrolysis and acidification of cellulose at high loading for methane production via anaerobic digestion supplemented with high mobility nanobubble water.
    Wang X; Yuan T; Guo Z; Han H; Lei Z; Shimizu K; Zhang Z; Lee DJ
    Bioresour Technol; 2020 Feb; 297():122499. PubMed ID: 31835146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supplementation of CO
    Song H; Hou T; Jiao Y; Liu L; Pan X; Li G; Zhang Q; Zeng Y; Cui Z; Li P; Awasthi MK; He C
    Chemosphere; 2023 Feb; 313():137613. PubMed ID: 36549508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of methane production from anaerobic digestion of Erigeron canadensis via O
    Pei L; Song Y; Chen G; Mu L; Yan B; Zhou T
    Chemosphere; 2024 Apr; 354():141732. PubMed ID: 38499072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy recovery from one- and two-stage anaerobic digestion of food waste.
    De Gioannis G; Muntoni A; Polettini A; Pomi R; Spiga D
    Waste Manag; 2017 Oct; 68():595-602. PubMed ID: 28629709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen and methane production in a two-stage anaerobic digestion system by co-digestion of food waste, sewage sludge and glycerol.
    Silva FMS; Mahler CF; Oliveira LB; Bassin JP
    Waste Manag; 2018 Jun; 76():339-349. PubMed ID: 29486911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the roles of zero-valent iron in two-stage food waste anaerobic digestion.
    Yuan T; Bian S; Ko JH; Liu J; Shi X; Xu Q
    Waste Manag; 2020 Apr; 107():91-100. PubMed ID: 32278220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated food waste and sewage treatment - A better approach than conventional food waste-sludge co-digestion for higher energy recovery via anaerobic digestion.
    Kaur G; Luo L; Chen G; Wong JWC
    Bioresour Technol; 2019 Oct; 289():121698. PubMed ID: 31260933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved methane production from corn straw using anaerobically digested sludge pre-augmented by nanobubble water.
    Wang X; Lei Z; Shimizu K; Zhang Z; Lee DJ
    Bioresour Technol; 2020 Sep; 311():123479. PubMed ID: 32413644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste: Performance, kinetics and energy recovery.
    Liu J; Zhao M; Lv C; Yue P
    Environ Res; 2020 Oct; 189():109856. PubMed ID: 32979990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation.
    Fan Y; Yang X; Lei Z; Adachi Y; Kobayashi M; Zhang Z; Shimizu K
    Bioresour Technol; 2021 Apr; 326():124782. PubMed ID: 33535153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic co-digestion of sewage sludge pretreated by thermal hydrolysis and food waste: gas production, dewatering performance, and community structure.
    Cao X; Yuan H; Tian Y
    Environ Technol; 2024 Jan; 45(4):612-623. PubMed ID: 36006404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of food to vegetable waste ratio on acidogenesis and methanogenesis during two-stage integration.
    Chakraborty D; Venkata Mohan S
    Bioresour Technol; 2018 Apr; 254():256-263. PubMed ID: 29413931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH regulation of the first phase could enhance the energy recovery from two-phase anaerobic digestion of food waste.
    Zhao Q; Arhin SG; Yang Z; Liu H; Li Z; Anwar N; Papadakis VG; Liu G; Wang W
    Water Environ Res; 2021 Aug; 93(8):1370-1380. PubMed ID: 33528855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchronous improvement of methane production and digestate dewaterability in sludge anaerobic digestion by nanobubble.
    Wang T; Wang J; Niu J; Guo P; Peng C; He R; Hui Z; Gao W; Zhang Q
    Bioresour Technol; 2024 Jun; 402():130791. PubMed ID: 38705211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced hydrolysis of lignocellulose in corn cob by using food waste pretreatment to improve anaerobic digestion performance.
    Zou H; Jiang Q; Zhu R; Chen Y; Sun T; Li M; Zhai J; Shi D; Ai H; Gu L; He Q
    J Environ Manage; 2020 Jan; 254():109830. PubMed ID: 31733477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food waste impact on dry anaerobic digestion of straw in a novel reactor: Biogas yield, stability, and hydrolysis-methanogenesis processes.
    Chen X; He H; Zhu N; Jia P; Tian J; Song W; Cui Z; Yuan X
    Bioresour Technol; 2024 Aug; 406():131023. PubMed ID: 38914235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biowaste management by hydrothermal carbonization and anaerobic co-digestion: Synergistic effects and comparative metagenomic analysis.
    Suárez E; Tobajas M; Mohedano AF; de la Rubia MA
    Waste Manag; 2024 May; 180():1-8. PubMed ID: 38493518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.