These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33162207)
1. Synthesis of GluN2A-selective NMDA receptor antagonists with an electron-rich aromatic B-ring. Rajan R; Schepmann D; Schreiber JA; Seebohm G; Wünsch B Eur J Med Chem; 2021 Jan; 209():112939. PubMed ID: 33162207 [TBL] [Abstract][Full Text] [Related]
2. Systematic variation of the benzoylhydrazine moiety of the GluN2A selective NMDA receptor antagonist TCN-201. Schreiber JA; Müller SL; Westphälinger SE; Schepmann D; Strutz-Seebohm N; Seebohm G; Wünsch B Eur J Med Chem; 2018 Oct; 158():259-269. PubMed ID: 30218911 [TBL] [Abstract][Full Text] [Related]
3. [2.2]Paracyclophane-Based TCN-201 Analogs as GluN2A-Selective NMDA Receptor Antagonists. Rajan R; Schepmann D; Steigerwald R; Schreiber JA; El-Awaad E; Jose J; Seebohm G; Wünsch B ChemMedChem; 2021 Oct; 16(20):3201-3209. PubMed ID: 34265163 [TBL] [Abstract][Full Text] [Related]
4. Systematic variation of the benzenesulfonamide part of the GluN2A selective NMDA receptor antagonist TCN-201. Müller SL; Schreiber JA; Schepmann D; Strutz-Seebohm N; Seebohm G; Wünsch B Eur J Med Chem; 2017 Mar; 129():124-134. PubMed ID: 28222314 [TBL] [Abstract][Full Text] [Related]
5. GluN2A-Selective NMDA Receptor Antagonists: Mimicking the U-Shaped Bioactive Conformation of TCN-201 by a [2.2]Paracyclophane System. Steigerwald R; Chou TH; Furukawa H; Wünsch B ChemMedChem; 2022 Nov; 17(21):e202200484. PubMed ID: 36169098 [TBL] [Abstract][Full Text] [Related]
6. Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist. McKay S; Griffiths NH; Butters PA; Thubron EB; Hardingham GE; Wyllie DJ Br J Pharmacol; 2012 Jun; 166(3):924-37. PubMed ID: 22022974 [TBL] [Abstract][Full Text] [Related]
7. TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner. Edman S; McKay S; Macdonald LJ; Samadi M; Livesey MR; Hardingham GE; Wyllie DJ Neuropharmacology; 2012 Sep; 63(3):441-9. PubMed ID: 22579927 [TBL] [Abstract][Full Text] [Related]
8. Deconstruction - Reconstruction: Analysis of the Crucial Structural Elements of GluN2B-Selective, Negative Allosteric NMDA Receptor Modulators with 3-Benzazepine Scaffold. Ritter N; Korff M; Markus A; Schepmann D; Seebohm G; Schreiber JA; Wünsch B Cell Physiol Biochem; 2021 Mar; 55(S3):1-13. PubMed ID: 33656308 [TBL] [Abstract][Full Text] [Related]
9. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit. Volkmann RA; Fanger CM; Anderson DR; Sirivolu VR; Paschetto K; Gordon E; Virginio C; Gleyzes M; Buisson B; Steidl E; Mierau SB; Fagiolini M; Menniti FS PLoS One; 2016; 11(2):e0148129. PubMed ID: 26829109 [TBL] [Abstract][Full Text] [Related]
10. The human NMDA receptor GluN2A Marwick KFM; Skehel PA; Hardingham GE; Wyllie DJA Pharmacol Res Perspect; 2019 Aug; 7(4):e00495. PubMed ID: 31249692 [No Abstract] [Full Text] [Related]
12. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated currents and synaptic potentials. Randle JC; Guet T; Bobichon C; Moreau C; Curutchet P; Lambolez B; de Carvalho LP; Cordi A; Lepagnol JM Mol Pharmacol; 1992 Feb; 41(2):337-45. PubMed ID: 1371583 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, binding affinity at glutamic acid receptors, neuroprotective effects, and molecular modeling investigation of novel dihydroisoxazole amino acids. Conti P; De Amici M; Grazioso G; Roda G; Pinto A; Hansen KB; Nielsen B; Madsen U; Bräuner-Osborne H; Egebjerg J; Vestri V; Pellegrini-Giampietro DE; Sibille P; Acher FC; De Micheli C J Med Chem; 2005 Oct; 48(20):6315-25. PubMed ID: 16190758 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of rat recombinant GluN1/GluN2A and GluN1/GluN2B NMDA receptors by ethanol at concentrations based on the US/UK drink-drive limit. Otton HJ; Janssen A; O'Leary T; Chen PE; Wyllie DJ Eur J Pharmacol; 2009 Jul; 614(1-3):14-21. PubMed ID: 19394328 [TBL] [Abstract][Full Text] [Related]
15. Structure-activity relationships for allosteric NMDA receptor inhibitors based on 2-naphthoic acid. Costa BM; Irvine MW; Fang G; Eaves RJ; Mayo-Martin MB; Laube B; Jane DE; Monaghan DT Neuropharmacology; 2012 Mar; 62(4):1730-6. PubMed ID: 22155206 [TBL] [Abstract][Full Text] [Related]
16. Negative allosteric modulators of the GluN2B NMDA receptor with phenylethylamine structure embedded in ring-expanded and ring-contracted scaffolds. Temme L; Bechthold E; Schreiber JA; Gawaskar S; Schepmann D; Robaa D; Sippl W; Seebohm G; Wünsch B Eur J Med Chem; 2020 Mar; 190():112138. PubMed ID: 32070917 [TBL] [Abstract][Full Text] [Related]
17. Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077. Romero-Hernandez A; Furukawa H Mol Pharmacol; 2017 Jul; 92(1):22-29. PubMed ID: 28468946 [TBL] [Abstract][Full Text] [Related]
18. Structure-activity analysis of a novel NR2C/NR2D-preferring NMDA receptor antagonist: 1-(phenanthrene-2-carbonyl) piperazine-2,3-dicarboxylic acid. Feng B; Tse HW; Skifter DA; Morley R; Jane DE; Monaghan DT Br J Pharmacol; 2004 Feb; 141(3):508-16. PubMed ID: 14718249 [TBL] [Abstract][Full Text] [Related]
19. Subunit-specific effects of poricoic acid A on NMDA receptors. Lee J; Kim C; Yeom HD; Nguyen KVA; Eom S; Lee S; Jung JH; Lee JH; Kim SH; Kim IK; Lee JH Pharmacol Rep; 2020 Apr; 72(2):472-480. PubMed ID: 32048268 [TBL] [Abstract][Full Text] [Related]
20. Postsynaptic GluN2B-containing NMDA receptors contribute to long-term depression induction in medial vestibular nucleus neurons of juvenile rats. Li YH; Li Y; Zheng L; Wang J Neurosci Lett; 2020 Jan; 715():134674. PubMed ID: 31809803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]