These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33162420)

  • 1. Biomarker Analysis on a Power-free Microfluidic Chip Driven by Degassed Poly(dimethylsiloxane).
    Hosokawa K
    Anal Sci; 2021 Mar; 37(3):399-403. PubMed ID: 33162420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power-free microchip immunoassay of PSA in human serum for point-of-care testing.
    Okada H; Hosokawa K; Maeda M
    Anal Sci; 2011; 27(3):237-41. PubMed ID: 21415503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex MicroRNA Detection on a Power-free Microfluidic Chip with Laminar Flow-assisted Dendritic Amplification.
    Ishihara R; Hasegawa K; Hosokawa K; Maeda M
    Anal Sci; 2015; 31(7):573-6. PubMed ID: 26165275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity Enhancement of MicroRNA Detection Using a Power-free Microfluidic Chip.
    Kim YJ; Hosokawa K; Maeda M
    Anal Sci; 2019 Nov; 35(11):1227-1236. PubMed ID: 31327815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid sub-attomole microRNA detection on a portable microfluidic chip.
    Arata H; Hosokawa K; Maeda M
    Anal Sci; 2014; 30(1):129-35. PubMed ID: 24420254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA detection on a power-free microchip with laminar flow-assisted dendritic amplification.
    Hosokawa K; Sato T; Sato Y; Maeda M
    Anal Sci; 2010; 26(10):1053-7. PubMed ID: 20953047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization.
    Arata H; Komatsu H; Han A; Hosokawa K; Maeda M
    Analyst; 2012 Jul; 137(14):3234-7. PubMed ID: 22614070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and sensitive microRNA detection with laminar flow-assisted dendritic amplification on power-free microfluidic chip.
    Arata H; Komatsu H; Hosokawa K; Maeda M
    PLoS One; 2012; 7(11):e48329. PubMed ID: 23144864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in the research of finger-actuated POCT chips.
    Du Z; Chen L; Yang S
    Mikrochim Acta; 2023 Dec; 191(1):65. PubMed ID: 38158397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-sampling and Rapid Analysis of Cancer Biomarker on a Power-free and Low-cost Microfluidic Chip.
    Gao N; Chang J; Dai P; Zhu Z; You H
    Anal Sci; 2021 Dec; 37(12):1695-1700. PubMed ID: 34024865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices.
    Liang DY; Tentori AM; Dimov IK; Lee LP
    Biomicrofluidics; 2011 Jun; 5(2):24108. PubMed ID: 21716807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoassay on a power-free microchip with laminar flow-assisted dendritic amplification.
    Hosokawa K; Omata M; Maeda M
    Anal Chem; 2007 Aug; 79(15):6000-4. PubMed ID: 17614367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing reusability of microfluidic devices: Urinary protein uptake by PDMS-based channels after long-term cyclic use.
    Amin R; Li L; Tasoglu S
    Talanta; 2019 Jan; 192():455-462. PubMed ID: 30348417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane.
    Ma YD; Chang WH; Luo K; Wang CH; Liu SY; Yen WH; Lee GB
    Biosens Bioelectron; 2018 Jan; 99():547-554. PubMed ID: 28823979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-priming compartmentalization digital LAMP for point-of-care.
    Zhu Q; Gao Y; Yu B; Ren H; Qiu L; Han S; Jin W; Jin Q; Mu Y
    Lab Chip; 2012 Nov; 12(22):4755-63. PubMed ID: 22986619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detector-Free Photothermal Bar-Chart Microfluidic Chips (PT-Chips) for Visual Quantitative Detection of Biomarkers.
    Zhou W; Fu G; Li X
    Anal Chem; 2021 Jun; 93(21):7754-7762. PubMed ID: 33999603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices.
    Park J; Han DH; Park JK
    Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis.
    Hosokawa K; Sato K; Ichikawa N; Maeda M
    Lab Chip; 2004 Jun; 4(3):181-5. PubMed ID: 15159775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated microfluidic pumps and valves operated by finger actuation.
    Park J; Park JK
    Lab Chip; 2019 Sep; 19(18):2973-2977. PubMed ID: 31433426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated microfluidic chemiluminescence immunoassay platform for quantitative detection of biomarkers.
    Min X; Fu D; Zhang J; Zeng J; Weng Z; Chen W; Zhang S; Zhang D; Ge S; Zhang J; Xia N
    Biomed Microdevices; 2018 Oct; 20(4):91. PubMed ID: 30361769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.