These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 33162883)

  • 41. An Integrated Multi-Sensor Network for Adaptive Grasping of Fragile Fruits: Design and Feasibility Tests.
    Xie Y; Zhang B; Zhou J; Bai Y; Zhang M
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887418
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of Event-Based Algorithms for Optical Flow with Ground-Truth from Inertial Measurement Sensor.
    Rueckauer B; Delbruck T
    Front Neurosci; 2016; 10():176. PubMed ID: 27199639
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Low-Latency Line Tracking Using Event-Based Dynamic Vision Sensors.
    Everding L; Conradt J
    Front Neurorobot; 2018; 12():4. PubMed ID: 29515386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Approaching Retinal Ganglion Cell Modeling and FPGA Implementation for Robotics.
    Linares-Barranco A; Liu H; Rios-Navarro A; Gomez-Rodriguez F; Moeys DP; Delbruck T
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265565
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bio-inspired affordance learning for 6-DoF robotic grasping: A transformer-based global feature encoding approach.
    Zhao Z; Yu H; Wu H; Zhang X
    Neural Netw; 2024 Mar; 171():332-342. PubMed ID: 38113718
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Spike-Based Neuromorphic Architecture of Stereo Vision.
    Risi N; Aimar A; Donati E; Solinas S; Indiveri G
    Front Neurorobot; 2020; 14():568283. PubMed ID: 33304262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low-Power Dynamic Object Detection and Classification With Freely Moving Event Cameras.
    Ramesh B; Ussa A; Della Vedova L; Yang H; Orchard G
    Front Neurosci; 2020; 14():135. PubMed ID: 32153357
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graph-Based Visual Manipulation Relationship Reasoning Network for Robotic Grasping.
    Zuo G; Tong J; Liu H; Chen W; Li J
    Front Neurorobot; 2021; 15():719731. PubMed ID: 34483872
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tactile Model O: Fabrication and Testing of a 3D-Printed, Three-Fingered Tactile Robot Hand.
    James JW; Church A; Cramphorn L; Lepora NF
    Soft Robot; 2021 Oct; 8(5):594-610. PubMed ID: 33337925
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
    Milde MB; Blum H; Dietmüller A; Sumislawska D; Conradt J; Indiveri G; Sandamirskaya Y
    Front Neurorobot; 2017; 11():28. PubMed ID: 28747883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cursive-Text: A Comprehensive Dataset for End-to-End Urdu Text Recognition in Natural Scene Images.
    Chandio AA; Asikuzzaman M; Pickering M; Leghari M
    Data Brief; 2020 Aug; 31():105749. PubMed ID: 32490098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Deep Learning Method for Grasping Novel Objects Using Dexterous Hands.
    Shang W; Song F; Zhao Z; Gao H; Cong S; Li Z
    IEEE Trans Cybern; 2022 May; 52(5):2750-2762. PubMed ID: 33001823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Noise Filtering Algorithm for Event-Based Asynchronous Change Detection Image Sensors on TrueNorth and Its Implementation on TrueNorth.
    Padala V; Basu A; Orchard G
    Front Neurosci; 2018; 12():118. PubMed ID: 29556172
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lossless Encoding of Time-Aggregated Neuromorphic Vision Sensor Data Based on Point-Cloud Compression.
    Adhuran J; Khan N; Martini MG
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38474918
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic-Vision-Based Force Measurements Using Convolutional Recurrent Neural Networks.
    Baghaei Naeini F; Makris D; Gan D; Zweiri Y
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32785095
    [TBL] [Abstract][Full Text] [Related]  

  • 56. (MARGOT) Monocular Camera-Based Robot Grasping Strategy for Metallic Objects.
    Veiga Almagro C; Muñoz Orrego RA; García González Á; Matheson E; Marín Prades R; Di Castro M; Ferre Pérez M
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300071
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fully Automated DCNN-Based Thermal Images Annotation Using Neural Network Pretrained on RGB Data.
    Ligocki A; Jelinek A; Zalud L; Rahtu E
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672344
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Flexible Electronic Skin for Monitoring of Grasping State During Robotic Manipulation.
    Bao L; Han C; Li G; Chen J; Wang W; Yang H; Huang X; Guo J; Wu H
    Soft Robot; 2023 Apr; 10(2):336-344. PubMed ID: 36037018
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generation of Tactile Data From 3D Vision and Target Robotic Grasps.
    Zapata-Impata BS; Gil P; Mezouar Y; Torres F
    IEEE Trans Haptics; 2021; 14(1):57-67. PubMed ID: 32746383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.