BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 33162885)

  • 1. Classifying Intracortical Brain-Machine Interface Signal Disruptions Based on System Performance and Applicable Compensatory Strategies: A Review.
    Dunlap CF; Colachis SC; Meyers EC; Bockbrader MA; Friedenberg DA
    Front Neurorobot; 2020; 14():558987. PubMed ID: 33162885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term intracortical microelectrode array performance in a human: a 5 year retrospective analysis.
    Colachis SC; Dunlap CF; Annetta NV; Tamrakar SM; Bockbrader MA; Friedenberg DA
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352736
    [No Abstract]   [Full Text] [Related]  

  • 3. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates.
    Barrese JC; Rao N; Paroo K; Triebwasser C; Vargas-Irwin C; Franquemont L; Donoghue JP
    J Neural Eng; 2013 Dec; 10(6):066014. PubMed ID: 24216311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates.
    Barrese JC; Aceros J; Donoghue JP
    J Neural Eng; 2016 Apr; 13(2):026003. PubMed ID: 26824680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deployable, liquid crystal elastomer-based intracortical probes.
    Rihani RT; Stiller AM; Usoro JO; Lawson J; Kim H; Black BJ; Danda VR; Maeng J; Varner VD; Ware TH; Pancrazio JJ
    Acta Biomater; 2020 Jul; 111():54-64. PubMed ID: 32428679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing Robustness of Brain-Computer Interfaces Through Automatic Detection and Removal of Corrupted Input Signals.
    Vasko JL; Aume L; Tamrakar S; Colachis SCI; Dunlap CF; Rich A; Meyers EC; Gabrieli D; Friedenberg DA
    Front Neurosci; 2022; 16():858377. PubMed ID: 35573306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of genes involved in the chronic response to intracortical microelectrodes.
    Song S; Druschel LN; Chan ER; Capadona JR
    Acta Biomater; 2023 Oct; 169():348-362. PubMed ID: 37507031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-term stability of neural signals from microwire arrays implanted in common marmoset motor cortex and striatum.
    Debnath S; Prins NW; Pohlmeyer E; Mylavarapu R; Geng S; Sanchez JC; Prasad A
    Biomed Phys Eng Express; 2018 Sep; 4(5):. PubMed ID: 31011432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracting wavelet based neural features from human intracortical recordings for neuroprosthetics applications.
    Zhang M; Schwemmer MA; Ting JE; Majstorovic CE; Friedenberg DA; Bockbrader MA; Jerry Mysiw W; Rezai AR; Annetta NV; Bouton CE; Bresler HS; Sharma G
    Bioelectron Med; 2018; 4():11. PubMed ID: 32232087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording.
    Kozai TD; Catt K; Li X; Gugel ZV; Olafsson VT; Vazquez AL; Cui XT
    Biomaterials; 2015 Jan; 37():25-39. PubMed ID: 25453935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain-machine interface.
    Dai J; Zhang P; Sun H; Qiao X; Zhao Y; Ma J; Li S; Zhou J; Wang C
    J Neural Eng; 2019 Jun; 16(3):036011. PubMed ID: 30822756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Firing-rate-modulated spike detection and neural decoding co-design.
    Zhang Z; Constandinou TG
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37080210
    [No Abstract]   [Full Text] [Related]  

  • 15. Layer-dependent stability of intracortical recordings and neuronal cell loss.
    Urdaneta ME; Kunigk NG; Peñaloza-Aponte JD; Currlin S; Malone IG; Fried SI; Otto KJ
    Front Neurosci; 2023; 17():1096097. PubMed ID: 37090803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracortical recording interfaces: current challenges to chronic recording function.
    Gunasekera B; Saxena T; Bellamkonda R; Karumbaiah L
    ACS Chem Neurosci; 2015 Jan; 6(1):68-83. PubMed ID: 25587704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain-Machine Interface.
    Zhang P; Chao L; Chen Y; Ma X; Wang W; He J; Huang J; Li Q
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on "An Integrated Brain-Machine Interface Platform With Thousands of Channels".
    Kirsch RF; Ajiboye AB; Miller JP
    J Med Internet Res; 2019 Oct; 21(10):e16339. PubMed ID: 31674921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning.
    Ahmadi N; Constandinou TG; Bouganis CS
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33477128
    [No Abstract]   [Full Text] [Related]  

  • 20. Targeting CD14 on blood derived cells improves intracortical microelectrode performance.
    Bedell HW; Hermann JK; Ravikumar M; Lin S; Rein A; Li X; Molinich E; Smith PD; Selkirk SM; Miller RH; Sidik S; Taylor DM; Capadona JR
    Biomaterials; 2018 May; 163():163-173. PubMed ID: 29471127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.