These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 33162885)

  • 21. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array.
    Simeral JD; Kim SP; Black MJ; Donoghue JP; Hochberg LR
    J Neural Eng; 2011 Apr; 8(2):025027. PubMed ID: 21436513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study.
    Wan Z; Liu T; Ran X; Liu P; Chen W; Zhang S
    Front Comput Neurosci; 2023; 17():1135783. PubMed ID: 37251598
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reliability of motor and sensory neural decoding by threshold crossings for intracortical brain-machine interface.
    Dai J; Zhang P; Sun H; Qiao X; Zhao Y; Ma J; Li S; Zhou J; Wang C
    J Neural Eng; 2019 Jun; 16(3):036011. PubMed ID: 30822756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracortical recording interfaces: current challenges to chronic recording function.
    Gunasekera B; Saxena T; Bellamkonda R; Karumbaiah L
    ACS Chem Neurosci; 2015 Jan; 6(1):68-83. PubMed ID: 25587704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Targeting CD14 on blood derived cells improves intracortical microelectrode performance.
    Bedell HW; Hermann JK; Ravikumar M; Lin S; Rein A; Li X; Molinich E; Smith PD; Selkirk SM; Miller RH; Sidik S; Taylor DM; Capadona JR
    Biomaterials; 2018 May; 163():163-173. PubMed ID: 29471127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical analysis of intracortical microelectrode recordings.
    Lempka SF; Johnson MD; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    J Neural Eng; 2011 Aug; 8(4):045006. PubMed ID: 21775783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces.
    Kao JC; Ryu SI; Shenoy KV
    Sci Rep; 2017 Aug; 7(1):7395. PubMed ID: 28784984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain-Machine Interface.
    Zhang P; Chao L; Chen Y; Ma X; Wang W; He J; Huang J; Li Q
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Reconnecting the Hand and Arm with Brain (ReHAB) Commentary on "An Integrated Brain-Machine Interface Platform With Thousands of Channels".
    Kirsch RF; Ajiboye AB; Miller JP
    J Med Internet Res; 2019 Oct; 21(10):e16339. PubMed ID: 31674921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of referencing scheme on decoding performance of LFP-based brain-machine interface.
    Ahmadi N; Constandinou TG; Bouganis CS
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33242850
    [No Abstract]   [Full Text] [Related]  

  • 31. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antioxidant Dimethyl Fumarate Temporarily but Not Chronically Improves Intracortical Microelectrode Performance.
    Hoeferlin GF; Bajwa T; Olivares H; Zhang J; Druschel LN; Sturgill BS; Sobota M; Boucher P; Duncan J; Hernandez-Reynoso AG; Cogan SF; Pancrazio JJ; Capadona JR
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893339
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.
    Schroeder KE; Chestek CA
    Front Neurosci; 2016; 10():291. PubMed ID: 27445663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feature-Selection-Based Transfer Learning for Intracortical Brain-Machine Interface Decoding.
    Zhang P; Li W; Ma X; He J; Huang J; Li Q
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():60-73. PubMed ID: 33108289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decoder calibration with ultra small current sample set for intracortical brain-machine interface.
    Zhang P; Ma X; Chen L; Zhou J; Wang C; Li W; He J
    J Neural Eng; 2018 Apr; 15(2):026019. PubMed ID: 29343650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Information sparseness in cortical microelectrode channels while decoding movement direction using an artificial neural network.
    Premchand B; Toe KK; Wang C; Libedinsky C; Ang KK; So RQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3534-3537. PubMed ID: 36085749
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retrospectively supervised click decoder calibration for self-calibrating point-and-click brain-computer interfaces.
    Jarosiewicz B; Sarma AA; Saab J; Franco B; Cash SS; Eskandar EN; Hochberg LR
    J Physiol Paris; 2016 Nov; 110(4 Pt A):382-391. PubMed ID: 28286237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density MEA).
    Guo L
    J Neural Eng; 2020 Jun; 17(3):036018. PubMed ID: 32365334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system.
    Perge JA; Homer ML; Malik WQ; Cash S; Eskandar E; Friehs G; Donoghue JP; Hochberg LR
    J Neural Eng; 2013 Jun; 10(3):036004. PubMed ID: 23574741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neural Decoding for Intracortical Brain-Computer Interfaces.
    Dong Y; Wang S; Huang Q; Berg RW; Li G; He J
    Cyborg Bionic Syst; 2023; 4():0044. PubMed ID: 37519930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.