These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 33162885)

  • 41. Augmenting intracortical brain-machine interface with neurally driven error detectors.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    J Neural Eng; 2017 Dec; 14(6):066007. PubMed ID: 29130452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus.
    Wilson GH; Stavisky SD; Willett FR; Avansino DT; Kelemen JN; Hochberg LR; Henderson JM; Druckmann S; Shenoy KV
    J Neural Eng; 2020 Nov; 17(6):066007. PubMed ID: 33236720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Home Use of a Percutaneous Wireless Intracortical Brain-Computer Interface by Individuals With Tetraplegia.
    Simeral JD; Hosman T; Saab J; Flesher SN; Vilela M; Franco B; Kelemen JN; Brandman DM; Ciancibello JG; Rezaii PG; Eskandar EN; Rosler DM; Shenoy KV; Henderson JM; Nurmikko AV; Hochberg LR
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2313-2325. PubMed ID: 33784612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New approaches to eliminating common-noise artifacts in recordings from intracortical microelectrode arrays: inter-electrode correlation and virtual referencing.
    Paralikar KJ; Rao CR; Clement RS
    J Neurosci Methods; 2009 Jun; 181(1):27-35. PubMed ID: 19394363
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Explant Analysis of Utah Electrode Arrays Implanted in Human Cortex for Brain-Computer-Interfaces.
    Woeppel K; Hughes C; Herrera AJ; Eles JR; Tyler-Kabara EC; Gaunt RA; Collinger JL; Cui XT
    Front Bioeng Biotechnol; 2021; 9():759711. PubMed ID: 34950640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Leveraging historical knowledge of neural dynamics to rescue decoder performance as neural channels are lost: "Decoder hysteresis".
    Kao JC; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1061-6. PubMed ID: 26736448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics.
    Prins NW; Sanchez JC; Prasad A
    J Neural Eng; 2017 Jun; 14(3):036016. PubMed ID: 28240598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain-machine interfaces.
    Kim MK; Sohn JW; Lee B; Kim SP
    Biomed Eng Online; 2018 Feb; 17(1):28. PubMed ID: 29486778
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-source domain adaptation for decoder calibration of intracortical brain-machine interface.
    Li W; Ji S; Chen X; Kuai B; He J; Zhang P; Li Q
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33108775
    [No Abstract]   [Full Text] [Related]  

  • 50. Performance sustaining intracortical neural prostheses.
    Nuyujukian P; Kao JC; Fan JM; Stavisky SD; Ryu SI; Shenoy KV
    J Neural Eng; 2014 Dec; 11(6):066003. PubMed ID: 25307561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neuroinflammatory Gene Expression Analysis Reveals Pathways of Interest as Potential Targets to Improve the Recording Performance of Intracortical Microelectrodes.
    Song S; Regan B; Ereifej ES; Chan ER; Capadona JR
    Cells; 2022 Jul; 11(15):. PubMed ID: 35954192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensing and decoding the neural drive to paralyzed muscles during attempted movements of a person with tetraplegia using a sleeve array.
    Ting JE; Del Vecchio A; Sarma D; Verma N; Colachis SC; Annetta NV; Collinger JL; Farina D; Weber DJ
    J Neurophysiol; 2021 Dec; 126(6):2104-2118. PubMed ID: 34788156
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effect of a Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP) coating on the chronic recording performance of planar silicon intracortical microelectrode arrays.
    Hernandez-Reynoso AG; Sturgill BS; Hoeferlin GF; Druschel LN; Krebs OK; Menendez DM; Thai TTD; Smith TJ; Duncan J; Zhang J; Mittal G; Radhakrishna R; Desai MS; Cogan SF; Pancrazio JJ; Capadona JR
    Biomaterials; 2023 Dec; 303():122351. PubMed ID: 37931456
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects.
    Fernández E; Greger B; House PA; Aranda I; Botella C; Albisua J; Soto-Sánchez C; Alfaro A; Normann RA
    Front Neuroeng; 2014; 7():24. PubMed ID: 25100989
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrodeposited platinum-iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays.
    Cassar IR; Yu C; Sambangi J; Lee CD; Whalen JJ; Petrossians A; Grill WM
    Biomaterials; 2019 Jun; 205():120-132. PubMed ID: 30925400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Characterization of Brain-Computer Interface Performance Trade-Offs Using Support Vector Machines and Deep Neural Networks to Decode Movement Intent.
    Skomrock ND; Schwemmer MA; Ting JE; Trivedi HR; Sharma G; Bockbrader MA; Friedenberg DA
    Front Neurosci; 2018; 12():763. PubMed ID: 30459542
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanomaterial-based microelectrode arrays for in vitro bidirectional brain-computer interfaces: a review.
    Liu Y; Xu S; Yang Y; Zhang K; He E; Liang W; Luo J; Wu Y; Cai X
    Microsyst Nanoeng; 2023; 9():13. PubMed ID: 36726940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptive Artifact Removal From Intracortical Channels for Accurate Decoding of a Force Signal in Freely Moving Rats.
    Khorasani A; Shalchyan V; Daliri MR
    Front Neurosci; 2019; 13():350. PubMed ID: 31040764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new full closed-loop brain-machine interface approach based on neural activity: A study based on modeling and experimental studies.
    Amiri M; Nazari S; Jafari AH; Makkiabadi B
    Heliyon; 2023 Mar; 9(3):e13766. PubMed ID: 36851970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.