These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33163136)

  • 1. Continuous electrical lysis of cancer cells in a microfluidic device with passivated interdigitated electrodes.
    Pandian K; Ajanth Praveen M; Hoque SZ; Sudeepthi A; Sen AK
    Biomicrofluidics; 2020 Nov; 14(6):064101. PubMed ID: 33163136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of low-voltage pulse parameters on electroporation and electrical lysis using a microfluidic device with interdigitated electrodes.
    Morshed BI; Shams M; Mussivand T
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):871-82. PubMed ID: 24557688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Continuous Flow-through Microfluidic Device for Electrical Lysis of Cells.
    Lo YJ; Lei U
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31013954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting.
    Mernier G; Piacentini N; Braschler T; Demierre N; Renaud P
    Lab Chip; 2010 Aug; 10(16):2077-82. PubMed ID: 20556306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic DNA extraction from cells by electroporation on an integrated microfluidic platform.
    Geng T; Bao N; Sriranganathanw N; Li L; Lu C
    Anal Chem; 2012 Nov; 84(21):9632-9. PubMed ID: 23061629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embedded passivated-electrode insulator-based dielectrophoresis (EπDEP).
    Shake T; Zellner P; Sahari A; Breazeal MV; Behkam B; Pruden A; Agah M
    Anal Bioanal Chem; 2013 Dec; 405(30):9825-33. PubMed ID: 24162823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell electric lysis on an electroosmotic-driven microfluidic chip with arrays of microwells.
    Jen CP; Amstislavskaya TG; Liu YH; Hsiao JH; Chen YH
    Sensors (Basel); 2012; 12(6):6967-77. PubMed ID: 22969331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip lysis of mammalian cells through a handheld corona device.
    Escobedo C; Bürgel SC; Kemmerling S; Sauter N; Braun T; Hierlemann A
    Lab Chip; 2015 Jul; 15(14):2990-7. PubMed ID: 26055165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction and suppression of cell lysis in an electrokinetic microfluidic system.
    Habibi S; Lee HY; Moncada-Hernandez H; Minerick AR
    Electrophoresis; 2022 Jun; 43(12):1322-1336. PubMed ID: 35306692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical lysis: dynamics revisited and advances in On-chip operation.
    Morshed B; Shams M; Mussivand T
    Crit Rev Biomed Eng; 2013; 41(1):37-50. PubMed ID: 23510008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All electronic approach for high-throughput cell trapping and lysis with electrical impedance monitoring.
    Ameri SK; Singh PK; Dokmeci MR; Khademhosseini A; Xu Q; Sonkusale SR
    Biosens Bioelectron; 2014 Apr; 54():462-7. PubMed ID: 24315878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and performance of a microfluidic traveling-wave electrophoresis system.
    Jo KD; Schiffbauer JE; Edwards BE; Lloyd Carroll R; Timperman AT
    Analyst; 2012 Feb; 137(4):875-83. PubMed ID: 22087468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes for voltage reduction and throughput enhancement of electrical cell lysis on a lab-on-a-chip.
    Shahini M; Yeow JT
    Nanotechnology; 2011 Aug; 22(32):325705. PubMed ID: 21775777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolysis of Bacteria Based on Microfluidic Technology.
    Zhao J; Li N; Zhou X; Yu Z; Lan M; Chen S; Miao J; Li Y; Li G; Yang F
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-k Dielectric Passivation: Novel Considerations Enabling Cell Specific Lysis Induced by Electric Fields.
    Wassermann KJ; Barth S; Keplinger F; Noehammer C; Peham JR
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21228-35. PubMed ID: 27466697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated sample preparation in a microfluidic culture device for cellular metabolomics.
    Filla LA; Sanders KL; Filla RT; Edwards JL
    Analyst; 2016 Jun; 141(12):3858-65. PubMed ID: 27118418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic dielectrophoretic sorter using gel vertical electrodes.
    Luo J; Nelson EL; Li GP; Bachman M
    Biomicrofluidics; 2014 May; 8(3):034105. PubMed ID: 24926390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Testing of a Continuous Flow-Electrical-Split-Flow Lateral Transport Thin Separation System (Fl-El-SPLITT).
    Shiri F; Gale BK; Sant H; King B; Bardi GT; Hood JL; Petersen KE
    Anal Chem; 2021 Feb; 93(5):2888-2897. PubMed ID: 33476126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-voltage electrical cell lysis using a microfluidic device.
    Wei XY; Li JH; Wang L; Yang F
    Biomed Microdevices; 2019 Feb; 21(1):22. PubMed ID: 30790126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.