BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33163799)

  • 1. Pretreatment of Cellulose from Sugarcane Bagasse with Xylanase for Improving Dyeability with Natural Dyes.
    Senapitakkul V; Vanitjinda G; Torgbo S; Pinmanee P; Nimchua T; Rungthaworn P; Sukatta U; Sukyai P
    ACS Omega; 2020 Nov; 5(43):28168-28177. PubMed ID: 33163799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of xylanase-assisted pretreatment on the properties of cellulose and regenerated cellulose films from sugarcane bagasse.
    Vanitjinda G; Nimchua T; Sukyai P
    Int J Biol Macromol; 2019 Feb; 122():503-516. PubMed ID: 30385339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of electrohydrodynamic technique as a complementary process for cellulose extraction from bagasse: Crystalline to amorphous transition.
    Ahmadzadeh S; Nasirpour A; Harchegani MB; Hamdami N; Keramat J
    Carbohydr Polym; 2018 May; 188():188-196. PubMed ID: 29525156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated elephant colon for cellulose extraction from sugarcane bagasse: An effective pretreatment to reduce chemical use.
    Sriwong C; Sukyai P
    Sci Total Environ; 2022 Aug; 835():155281. PubMed ID: 35439514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun Ultrafine Cationic Cellulose Fibers Produced from Sugarcane Bagasse for Potential Textile Applications.
    Ochica Larrota AF; Vera-Graziano R; López-Córdoba A; Gómez-Pachón EY
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically purified cellulose and its nanocrystals from sugarcane baggase: isolation and characterization.
    Evans SK; Wesley ON; Nathan O; Moloto MJ
    Heliyon; 2019 Oct; 5(10):e02635. PubMed ID: 31687498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Dyeability of Polyimide Fibers with the Assistance of Swelling Agents.
    Shao D; Xu C; Wang H; Du J
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30678312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image analysis of modified cellulose fibers from sugarcane bagasse by zirconium oxychloride.
    Mulinari DR; Cruz TG; Cioffi MO; Voorwald HJ; Da Silva ML; Rocha GJ
    Carbohydr Res; 2010 Sep; 345(13):1865-71. PubMed ID: 20599190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of natural cellulosic fiber extracted from Grewia ferruginea plant stem.
    Birlie B; Mamay T
    Int J Biol Macromol; 2024 Jun; 271(Pt 2):132858. PubMed ID: 38845254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber.
    Rasheed M; Jawaid M; Karim Z; Abdullah LC
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32570929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydrothermal and Ca(OH)
    Mustafa AM; Li H; Radwan AA; Sheng K; Chen X
    Bioresour Technol; 2018 Jul; 259():54-60. PubMed ID: 29536874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment.
    Moniruzzaman M; Ono T
    Bioresour Technol; 2013 Jan; 127():132-7. PubMed ID: 23131633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of ozonolysis time during sugarcane pretreatment: Effects on the fiber and enzymatic saccharification.
    Perrone OM; Rossi JS; Moretti MMS; Nunes CDCC; Bordignon SE; Gomes E; Da-Silva R; Boscolo M
    Bioresour Technol; 2017 Jan; 224():733-737. PubMed ID: 27889354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials.
    Pereira PHF; Ornaghi HL; Arantes V; Cioffi MOH
    Carbohydr Res; 2021 Jan; 499():108227. PubMed ID: 33388571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity.
    Vyavahare GD; Gurav RG; Jadhav PP; Patil RR; Aware CB; Jadhav JP
    Chemosphere; 2018 Mar; 194():306-315. PubMed ID: 29216550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Four Types of Chemical Pretreatment on Enzymatic Hydrolysis by SEM, XRD and FTIR Analysis.
    Jin SG; Zhang GM; Zhang PY; Zhou JC; Gao YW; Shi JN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1966-70. PubMed ID: 30053362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse.
    Zhang H; Wu S
    Bioresour Technol; 2014 Apr; 158():161-5. PubMed ID: 24603488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dyeing and Characterization of Cellulose Powder Developed from Waste Cotton.
    Gan L; Guo H; Xiao Z; Jia Z; Yang H; Sheng D; Pan H; Xu W; Wang Y
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31810164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray powder diffraction and other analyses of cellulose nanocrystals obtained from corn straw by chemical treatments.
    Hernandez CC; Ferreira FF; Rosa DS
    Carbohydr Polym; 2018 Aug; 193():39-44. PubMed ID: 29773395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide.
    Ventura-Cruz S; Flores-Alamo N; Tecante A
    Int J Biol Macromol; 2020 Jul; 155():324-329. PubMed ID: 32234444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.