These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33163910)

  • 1. Biomimetic Nanofibrous 3D Materials for Craniofacial Bone Tissue Engineering.
    Miszuk JM; Hu J; Sun H
    ACS Appl Bio Mater; 2020 Oct; 3(10):6538-6545. PubMed ID: 33163910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review.
    Chahal S; Kumar A; Hussian FSJ
    J Biomater Sci Polym Ed; 2019 Oct; 30(14):1308-1355. PubMed ID: 31181982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering.
    Liu X; Smith LA; Hu J; Ma PX
    Biomaterials; 2009 Apr; 30(12):2252-8. PubMed ID: 19152974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying.
    Zhao Q; Zhou Y; Wang M
    Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3.
    Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX
    Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering.
    Yao T; Baker MB; Moroni L
    Nanomaterials (Basel); 2020 May; 10(5):. PubMed ID: 32380699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration.
    Ye K; Liu D; Kuang H; Cai J; Chen W; Sun B; Xia L; Fang B; Morsi Y; Mo X
    J Colloid Interface Sci; 2019 Jan; 534():625-636. PubMed ID: 30265990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofibrous scaffolds for dental and craniofacial applications.
    Gupte MJ; Ma PX
    J Dent Res; 2012 Mar; 91(3):227-34. PubMed ID: 21828356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BBP-Functionalized Biomimetic Nanofibrous Scaffold Can Capture BMP2 and Promote Osteogenic Differentiation.
    Yao Q; Sandhurst ES; Liu Y; Sun H
    J Mater Chem B; 2017; 5(26):5196-5205. PubMed ID: 29250330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release.
    Ye K; Kuang H; You Z; Morsi Y; Mo X
    Pharmaceutics; 2019 Apr; 11(4):. PubMed ID: 30991742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization.
    Gupte MJ; Swanson WB; Hu J; Jin X; Ma H; Zhang Z; Liu Z; Feng K; Feng G; Xiao G; Hatch N; Mishina Y; Ma PX
    Acta Biomater; 2018 Dec; 82():1-11. PubMed ID: 30321630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue engineering scaffolds for the regeneration of craniofacial bone.
    Chan WD; Perinpanayagam H; Goldberg HA; Hunter GK; Dixon SJ; Santos GC; Rizkalla AS
    J Can Dent Assoc; 2009 Jun; 75(5):373-7. PubMed ID: 19531334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds.
    Liu X; Ma PX
    Biomaterials; 2009 Sep; 30(25):4094-103. PubMed ID: 19481080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds.
    Madurantakam PA; Cost CP; Simpson DG; Bowlin GL
    Nanomedicine (Lond); 2009 Feb; 4(2):193-206. PubMed ID: 19193185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation.
    Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H
    Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized scaffolds to enhance tissue regeneration.
    Guo B; Lei B; Li P; Ma PX
    Regen Biomater; 2015 Mar; 2(1):47-57. PubMed ID: 25844177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.