These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33163993)

  • 21. Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method.
    Sun H; Ma Y; MacDonald ME; Pike GB
    Neuroimage; 2018 Oct; 179():166-175. PubMed ID: 29906634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid two-step dipole inversion for susceptibility mapping with sparsity priors.
    Kames C; Wiggermann V; Rauscher A
    Neuroimage; 2018 Feb; 167():276-283. PubMed ID: 29138089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. xQSM: quantitative susceptibility mapping with octave convolutional and noise-regularized neural networks.
    Gao Y; Zhu X; Moffat BA; Glarin R; Wilman AH; Pike GB; Crozier S; Liu F; Sun H
    NMR Biomed; 2021 Mar; 34(3):e4461. PubMed ID: 33368705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-step quantitative susceptibility mapping with variational penalties.
    Chatnuntawech I; McDaniel P; Cauley SF; Gagoski BA; Langkammer C; Martin A; Grant PE; Wald LL; Setsompop K; Adalsteinsson E; Bilgic B
    NMR Biomed; 2017 Apr; 30(4):. PubMed ID: 27332141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range.
    Wei H; Dibb R; Zhou Y; Sun Y; Xu J; Wang N; Liu C
    NMR Biomed; 2015 Oct; 28(10):1294-303. PubMed ID: 26313885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Data-Driven Quantitative Susceptibility Mapping Using Loss Adaptive Dipole Inversion (LADI).
    Kamesh Iyer S; Moon BF; Josselyn N; Ruparel K; Roalf D; Song JW; Guiry S; Ware JB; Kurtz RM; Chawla S; Nabavizadeh SA; Witschey WR
    J Magn Reson Imaging; 2020 Sep; 52(3):823-835. PubMed ID: 32128914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping.
    Stewart AW; Robinson SD; O'Brien K; Jin J; Widhalm G; Hangel G; Walls A; Goodwin J; Eckstein K; Tourell M; Morgan C; Narayanan A; Barth M; Bollmann S
    Magn Reson Med; 2022 Mar; 87(3):1289-1300. PubMed ID: 34687073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QSMART: Quantitative susceptibility mapping artifact reduction technique.
    Yaghmaie N; Syeda WT; Wu C; Zhang Y; Zhang TD; Burrows EL; Brodtmann A; Moffat BA; Wright DK; Glarin R; Kolbe S; Johnston LA
    Neuroimage; 2021 May; 231():117701. PubMed ID: 33484853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A modulated closed form solution for quantitative susceptibility mapping--a thorough evaluation and comparison to iterative methods based on edge prior knowledge.
    Khabipova D; Wiaux Y; Gruetter R; Marques JP
    Neuroimage; 2015 Feb; 107():163-174. PubMed ID: 25463463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing k-space quantitative susceptibility mapping by enforcing consistency on the cone data (CCD) with structural priors.
    Wen Y; Wang Y; Liu T
    Magn Reson Med; 2016 Feb; 75(2):823-30. PubMed ID: 25752805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep Convolutional Neural Network for Inverse Problems in Imaging.
    Kyong Hwan Jin ; McCann MT; Froustey E; Unser M
    IEEE Trans Image Process; 2017 Sep; 26(9):4509-4522. PubMed ID: 28641250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NeXtQSM-A complete deep learning pipeline for data-consistent Quantitative Susceptibility Mapping trained with hybrid data.
    Cognolato F; O'Brien K; Jin J; Robinson S; Laun FB; Barth M; Bollmann S
    Med Image Anal; 2023 Feb; 84():102700. PubMed ID: 36529002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A method for estimating and removing streaking artifacts in quantitative susceptibility mapping.
    Li W; Wang N; Yu F; Han H; Cao W; Romero R; Tantiwongkosi B; Duong TQ; Liu C
    Neuroimage; 2015 Mar; 108():111-22. PubMed ID: 25536496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MANTIS: Model-Augmented Neural neTwork with Incoherent k-space Sampling for efficient MR parameter mapping.
    Liu F; Feng L; Kijowski R
    Magn Reson Med; 2019 Jul; 82(1):174-188. PubMed ID: 30860285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward online reconstruction of quantitative susceptibility maps: superfast dipole inversion.
    Schweser F; Deistung A; Sommer K; Reichenbach JR
    Magn Reson Med; 2013 Jun; 69(6):1582-94. PubMed ID: 22791625
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unsupervised resolution-agnostic quantitative susceptibility mapping using adaptive instance normalization.
    Oh G; Bae H; Ahn HS; Park SH; Moon WJ; Ye JC
    Med Image Anal; 2022 Jul; 79():102477. PubMed ID: 35605505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative susceptibility mapping using a superposed dipole inversion method: Application to intracranial hemorrhage.
    Sun H; Kate M; Gioia LC; Emery DJ; Butcher K; Wilman AH
    Magn Reson Med; 2016 Sep; 76(3):781-91. PubMed ID: 26414757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM).
    Wang Z; Xia P; Huang F; Wei H; Hui ES; Mak HK; Cao P
    Magn Reson Imaging; 2022 May; 88():89-100. PubMed ID: 35124180
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain.
    Schweser F; Sommer K; Deistung A; Reichenbach JR
    Neuroimage; 2012 Sep; 62(3):2083-100. PubMed ID: 22659482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Research Progress of Quantitative Susceptibility Mapping in MRI].
    Wang S; Duan C; Zhang P; Wang C; Liu X; Li H; Cheng J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Oct; 32(5):1131-4. PubMed ID: 26964324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.