These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33164003)

  • 21. Cu-Au-Ag alloy nanoparticles incorporated silica films using a new three-layer deposition technique.
    Pal S; Bysakh S; De G
    J Nanosci Nanotechnol; 2010 Feb; 10(2):775-83. PubMed ID: 20352717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Taguchi Optimization of Wetting, Thermal and Mechanical Properties of Sn-1.0wt.%Ag-0.5wt.%Cu Alloys Modified with Bi and Sb.
    Hong SJ; Sharma A; Jung JP
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893924
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Model and experimental studies for contact angles of surfactant solutions on rough and smooth hydrophobic surfaces.
    Milne AJ; Elliott JA; Zabeti P; Zhou J; Amirfazli A
    Phys Chem Chem Phys; 2011 Sep; 13(36):16208-19. PubMed ID: 21822523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beyond Wenzel and Cassie-Baxter: second-order effects on the wetting of rough surfaces.
    Hejazi V; Moghadam AD; Rohatgi P; Nosonovsky M
    Langmuir; 2014 Aug; 30(31):9423-9. PubMed ID: 25051526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamics of Dissolutive Wetting: A Molecular Dynamics Study.
    Yuan Q; Yang J; Sui Y; Zhao YP
    Langmuir; 2017 Jul; 33(26):6464-6470. PubMed ID: 28594558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The fluidity of alloys in high temperature. (Part 2) The fluidity of 20% Au-Ag-Pd-Cu alloy (author's transl)].
    Inaba H
    Shika Rikogaku Zasshi; 1981 Jan; 22(57):45-50. PubMed ID: 6943230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ observation of the chemical bonding state of Si in the molten state of eutectic Au-Si alloy of Au81Si19 by using a soft X-ray emission spectroscopy electron microscope.
    Terauchi M; Umemoto N; K Sato Y; Ageishi M; Tsai AP
    Microscopy (Oxf); 2022 Jan; 71(1):34-40. PubMed ID: 34302725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Capillary driven molten metal flow over topographically complex substrates.
    Liu W; Sekulic DP
    Langmuir; 2011 Jun; 27(11):6720-30. PubMed ID: 21526815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coalescence and wetting mechanism of Al droplets on different types of carbon for developing wettable cathodes: a molecular dynamics simulation.
    Lv X; Guan C; Han Z; Chen C; Sun Q
    Phys Chem Chem Phys; 2019 Oct; 21(38):21473-21484. PubMed ID: 31535116
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Equilibrium contact angles of liquid droplets on ideal rough solids.
    Kang HC; Jacobi AM
    Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apparent contact angles for reactive wetting of smooth, rough, and heterogeneous surfaces calculated from the variational principles.
    Bormashenko E
    J Colloid Interface Sci; 2019 Mar; 537():597-603. PubMed ID: 30471614
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 1000 °C High-Temperature Wetting Behaviors of Molten Metals on Laser-Microstructured Metal Surfaces.
    Hu X; Jiang G; Fan P; Hu G; Xu G; Wang W; Wang L; Zhang H; Zhong M
    Langmuir; 2023 Dec; 39(48):17538-17550. PubMed ID: 37991347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Surface Roughness and Droplet Size on Solder Wetting Angles.
    Griffith S; Siddiqui FN; Schmitz G
    ACS Appl Mater Interfaces; 2023 May; 15(20):24999-25008. PubMed ID: 37167071
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of macroscale wetting equations on a microrough surface.
    Wang Y; Wang X; Du Z; Zhang C; Tian M; Mi J
    Langmuir; 2015 Mar; 31(8):2342-50. PubMed ID: 25654557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adhesion testing of a denture base resin with 5 casting alloys.
    Clelland NL; van Putten MC; Brantley WA; Knobloch LA
    J Prosthodont; 2000 Mar; 9(1):30-6. PubMed ID: 11074026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Butler-Sugimoto monomolecular bilayer interface model: the effect of oxygen on the surface tension of a liquid metal and its wetting of a ceramic.
    Yen PS; Datta R
    J Colloid Interface Sci; 2014 Jul; 426():314-23. PubMed ID: 24863799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wetting Transitions of Liquid Gallium Film on Nanopillar-Decorated Graphene Surfaces.
    Wang J; Li T; Li Y; Duan Y; Jiang Y; Arandiyan H; Li H
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30241288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.