These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33164017)
1. Surface chemistry effects on work function, ionization potential and electronic affinity of Si(100), Ge(100) surfaces and SiGe heterostructures. Marri I; Amato M; Bertocchi M; Ferretti A; Varsano D; Ossicini S Phys Chem Chem Phys; 2020 Nov; 22(44):25593-25605. PubMed ID: 33164017 [TBL] [Abstract][Full Text] [Related]
2. Theoretical studies of the passivants' effect on the Si(x)Ge(1-x) nanowires: composition profiles, diameter, shape, and electronic properties. Yang XB; Zhao YJ; Xu H J Chem Phys; 2013 Oct; 139(15):154713. PubMed ID: 24160539 [TBL] [Abstract][Full Text] [Related]
3. Tuning Hydrogenated Silicon, Germanium, and SiGe Nanocluster Properties Using Theoretical Calculations and a Machine Learning Approach. Choi Y; Adamczyk AJ J Phys Chem A; 2018 Dec; 122(51):9851-9868. PubMed ID: 30484641 [TBL] [Abstract][Full Text] [Related]
4. What a difference a bond makes: the structural, chemical, and physical properties of methyl-terminated Si(111) surfaces. Wong KT; Lewis NS Acc Chem Res; 2014 Oct; 47(10):3037-44. PubMed ID: 25192516 [TBL] [Abstract][Full Text] [Related]
5. Surface dangling-bond States and band lineups in hydrogen-terminated Si, Ge, and Ge/si nanowires. Kagimura R; Nunes RW; Chacham H Phys Rev Lett; 2007 Jan; 98(2):026801. PubMed ID: 17358629 [TBL] [Abstract][Full Text] [Related]
6. On the mechanism of silicon activation by halogen atoms. Soria FA; Patrito EM; Paredes-Olivera P Langmuir; 2011 Mar; 27(6):2613-24. PubMed ID: 21338085 [TBL] [Abstract][Full Text] [Related]
7. Vibrational dynamics and band structure of methyl-terminated Ge(111). Hund ZM; Nihill KJ; Campi D; Wong KT; Lewis NS; Bernasconi M; Benedek G; Sibener SJ J Chem Phys; 2015 Sep; 143(12):124705. PubMed ID: 26429030 [TBL] [Abstract][Full Text] [Related]
8. SiGe/AsSb bilayer heterostructures: structural characteristics and tunable electronic properties. Ahmed T; Sakib H; Subrina S Nanotechnology; 2020 Jan; 31(3):035701. PubMed ID: 31550682 [TBL] [Abstract][Full Text] [Related]
9. Tuning the electronic and magnetic properties of graphene-like SiGe hybrid nanosheets by surface functionalization. Zhang WX; Wang YB; Zhao P; He C Phys Chem Chem Phys; 2016 Sep; 18(37):26205-26212. PubMed ID: 27711477 [TBL] [Abstract][Full Text] [Related]
10. First-principles investigation of oxidized Si- and Ge-terminated diamond (100) surfaces. Gomez H; Cruz J; Milne C; Debnath T; Birdwell AG; Garratt EJ; Pate BB; Rudin S; Ruzmetov DA; Weil JD; Shah PB; Ivanov TG; Lake RK; Groves MN; Neupane MR J Chem Phys; 2024 Aug; 161(6):. PubMed ID: 39120035 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive study of density functional theory based properties for group 14 atoms and functional groups, -XY3 (X = C, Si, Ge, Sn, Pb, Element 114; Y = CH3, H, F, Cl, Br, I, At). Giju KT; De Proft F; Geerlings P J Phys Chem A; 2005 Mar; 109(12):2925-36. PubMed ID: 16833611 [TBL] [Abstract][Full Text] [Related]
12. Interplay of Quantum Confinement and Strain Effects in Type I to Type II Transition in GeSi Core-Shell Nanocrystals. Marri I; Grillo S; Amato M; Ossicini S; Pulci O J Phys Chem C Nanomater Interfaces; 2023 Jan; 127(2):1209-1219. PubMed ID: 36704663 [TBL] [Abstract][Full Text] [Related]
13. Effects of -H and -OH Termination on Adhesion of Si-Si Contacts Examined Using Molecular Dynamics and Density Functional Theory. Schall JD; Morrow BH; Carpick RW; Harrison JA Langmuir; 2024 Mar; 40(9):4601-4614. PubMed ID: 38323922 [TBL] [Abstract][Full Text] [Related]
14. Density functional study of the decomposition pathways of SiH₃ and GeH₃ at the Si(100) and Ge(100) surfaces. Ceriotti M; Montalenti F; Bernasconi M J Phys Condens Matter; 2012 Mar; 24(10):104002. PubMed ID: 22354872 [TBL] [Abstract][Full Text] [Related]
15. Interfacial effects on the band edges of functionalized si surfaces in liquid water. Pham TA; Lee D; Schwegler E; Galli G J Am Chem Soc; 2014 Dec; 136(49):17071-7. PubMed ID: 25402590 [TBL] [Abstract][Full Text] [Related]
16. Structure and chemical reactivity of the polar three-fold surfaces of GaPd: a density-functional study. Krajčí M; Hafner J J Chem Phys; 2013 Mar; 138(12):124703. PubMed ID: 23556738 [TBL] [Abstract][Full Text] [Related]
17. Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC. Trejo A; Calvino M; Ramos E; Cruz-Irisson M Nanoscale Res Lett; 2012 Aug; 7(1):471. PubMed ID: 22913486 [TBL] [Abstract][Full Text] [Related]
18. First-principles calculations of the atomic and electronic structure of SrZrO3 and PbZrO3 (001) and (011) surfaces. Eglitis RI; Rohlfing M J Phys Condens Matter; 2010 Oct; 22(41):415901. PubMed ID: 21386602 [TBL] [Abstract][Full Text] [Related]
19. First-Principles Study on Structural, Electronic, and Optical Properties of Inorganic Ge-Based Halide Perovskites. Jong UG; Yu CJ; Kye YH; Choe YG; Hao W; Li S Inorg Chem; 2019 Apr; 58(7):4134-4140. PubMed ID: 30864433 [TBL] [Abstract][Full Text] [Related]
20. The effects of oxygen on the surface passivation of InP nanowires. Dionízio Moreira M; Venezuela P; Schmidt TM Nanotechnology; 2008 Feb; 19(6):065203. PubMed ID: 21730696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]