BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33164053)

  • 1. DeepSSV: detecting somatic small variants in paired tumor and normal sequencing data with convolutional neural network.
    Meng J; Victor B; He Z; Liu H; Jiang T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33164053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNN-Boost: Somatic mutation identification of tumor-only whole-exome sequencing data using deep neural network and XGBoost.
    Maruf FA; Pratama R; Song G
    J Bioinform Comput Biol; 2021 Dec; 19(6):2140017. PubMed ID: 34895111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional neural networks for accurate somatic mutation detection.
    Sahraeian SME; Liu R; Lau B; Podesta K; Mohiyuddin M; Lam HYK
    Nat Commun; 2019 Mar; 10(1):1041. PubMed ID: 30833567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated approach to generate artificial samples with low tumor fraction for somatic variant calling benchmarking.
    Sergi A; Beltrame L; Marchini S; Masseroli M
    BMC Bioinformatics; 2024 May; 25(1):180. PubMed ID: 38720249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal SNP and small-indel variant caller using deep neural networks.
    Poplin R; Chang PC; Alexander D; Schwartz S; Colthurst T; Ku A; Newburger D; Dijamco J; Nguyen N; Afshar PT; Gross SS; Dorfman L; McLean CY; DePristo MA
    Nat Biotechnol; 2018 Nov; 36(10):983-987. PubMed ID: 30247488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing.
    Spinella JF; Mehanna P; Vidal R; Saillour V; Cassart P; Richer C; Ouimet M; Healy J; Sinnett D
    BMC Genomics; 2016 Nov; 17(1):912. PubMed ID: 27842494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepSom: a CNN-based approach to somatic variant calling in WGS samples without a matched normal.
    Vilov S; Heinig M
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36637201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cnnLSV: detecting structural variants by encoding long-read alignment information and convolutional neural network.
    Ma H; Zhong C; Chen D; He H; Yang F
    BMC Bioinformatics; 2023 Mar; 24(1):119. PubMed ID: 36977976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A database of simulated tumor genomes towards accurate detection of somatic small variants in cancer.
    Meng J; Chen YP
    PLoS One; 2018; 13(8):e0202982. PubMed ID: 30161165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.
    Krøigård AB; Thomassen M; Lænkholm AV; Kruse TA; Larsen MJ
    PLoS One; 2016; 11(3):e0151664. PubMed ID: 27002637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating somatic tumor mutation detection without matched normal samples.
    Teer JK; Zhang Y; Chen L; Welsh EA; Cress WD; Eschrich SA; Berglund AE
    Hum Genomics; 2017 Sep; 11(1):22. PubMed ID: 28870239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Individualized Approach for Somatic Variant Discovery.
    Li M; He T; Cao C; Long Q
    Methods Mol Biol; 2020; 2120():11-36. PubMed ID: 32124309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GASOLINE: detecting germline and somatic structural variants from long-reads data.
    Magi A; Mattei G; Mingrino A; Caprioli C; Ronchini C; Frigè G; Semeraro R; Baragli M; Bolognini D; Colombo E; Mazzarella L; Pelicci PG
    Sci Rep; 2023 Nov; 13(1):20817. PubMed ID: 38012350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network.
    Cai L; Wu Y; Gao J
    BMC Bioinformatics; 2019 Dec; 20(1):665. PubMed ID: 31830921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving robust somatic mutation detection with deep learning models derived from reference data sets of a cancer sample.
    Sahraeian SME; Fang LT; Karagiannis K; Moos M; Smith S; Santana-Quintero L; Xiao C; Colgan M; Hong H; Mohiyuddin M; Xiao W
    Genome Biol; 2022 Jan; 23(1):12. PubMed ID: 34996510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network.
    Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N
    Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVEngine: an efficient and versatile simulator of genome structural variations with features of cancer clonal evolution.
    Xia LC; Ai D; Lee H; Andor N; Li C; Zhang NR; Ji HP
    Gigascience; 2018 Jul; 7(7):. PubMed ID: 29982625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lean and deep models for more accurate filtering of SNP and INDEL variant calls.
    Friedman S; Gauthier L; Farjoun Y; Banks E
    Bioinformatics; 2020 Apr; 36(7):2060-2067. PubMed ID: 31830260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving somatic exome sequencing performance by biological replicates.
    Cebeci YE; Erturk RA; Ergun MA; Baysan M
    BMC Bioinformatics; 2024 Mar; 25(1):124. PubMed ID: 38519906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of genetic variants from NGS data using deep convolutional neural networks.
    Vaisband M; Schubert M; Gassner FJ; Geisberger R; Greil R; Zaborsky N; Hasenauer J
    BMC Bioinformatics; 2023 Apr; 24(1):158. PubMed ID: 37081386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.