BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33164460)

  • 1. [Construction and optimization of p-coumaric acid-producing Saccharomyces cerevisiae].
    Zhang S; Zhou J; Zhang G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1838-1848. PubMed ID: 33164460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.
    Rodriguez A; Kildegaard KR; Li M; Borodina I; Nielsen J
    Metab Eng; 2015 Sep; 31():181-8. PubMed ID: 26292030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of the l-tyrosine metabolic pathway in
    Li Y; Mao J; Song X; Wu Y; Cai M; Wang H; Liu Q; Zhang X; Bai Y; Xu H; Qiao M
    3 Biotech; 2020 Jun; 10(6):258. PubMed ID: 32550099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution and Optimization of the Marmesin Biosynthetic Pathway in Yeast.
    Wang Z; Zhou Y; Wang Y; Yan X
    ACS Synth Biol; 2023 Oct; 12(10):2922-2933. PubMed ID: 37767718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial analysis of enzymatic bottlenecks of L-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae.
    Mao J; Liu Q; Song X; Wang H; Feng H; Xu H; Qiao M
    Biotechnol Lett; 2017 Jul; 39(7):977-982. PubMed ID: 28299546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Biosynthesis of (2
    Gao S; Lyu Y; Zeng W; Du G; Zhou J; Chen J
    J Agric Food Chem; 2020 Jan; 68(4):1015-1021. PubMed ID: 31690080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose.
    Borja GM; Rodriguez A; Campbell K; Borodina I; Chen Y; Nielsen J
    Microb Cell Fact; 2019 Nov; 18(1):191. PubMed ID: 31690329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains.
    Rodriguez A; Chen Y; Khoomrung S; Özdemir E; Borodina I; Nielsen J
    Metab Eng; 2017 Nov; 44():265-272. PubMed ID: 29101089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter-Library-Based Pathway Optimization for Efficient (2
    Gao S; Zhou H; Zhou J; Chen J
    J Agric Food Chem; 2020 Jun; 68(25):6884-6891. PubMed ID: 32458684
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Liu Y; Liu H; Hu H; Ng KR; Yang R; Lyu X
    J Agric Food Chem; 2022 Jun; 70(24):7490-7499. PubMed ID: 35649155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi.
    Vannelli T; Wei Qi W; Sweigard J; Gatenby AA; Sariaslani FS
    Metab Eng; 2007 Mar; 9(2):142-51. PubMed ID: 17204442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae.
    Adeboye PT; Bettiga M; Olsson L
    Sci Rep; 2017 Feb; 7():42635. PubMed ID: 28205618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals.
    Liu Q; Yu T; Li X; Chen Y; Campbell K; Nielsen J; Chen Y
    Nat Commun; 2019 Oct; 10(1):4976. PubMed ID: 31672987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient biosynthesis of resveratrol via combining phenylalanine and tyrosine pathways in Saccharomyces cerevisiae.
    Meng L; Diao M; Wang Q; Peng L; Li J; Xie N
    Microb Cell Fact; 2023 Mar; 22(1):46. PubMed ID: 36890537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products.
    Adeboye PT; Bettiga M; Aldaeus F; Larsson PT; Olsson L
    Microb Cell Fact; 2015 Sep; 14():149. PubMed ID: 26392265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome analysis of genomic region deletion strain with enhanced L-tyrosine production in Saccharomyces cerevisiae.
    Wu Y; Cai M; Song X; Li Y; Wang H; Mao J; Liu Q; Xu H; Qiao M
    Biotechnol Lett; 2020 Mar; 42(3):453-460. PubMed ID: 31863218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [High-throughput screening of Saccharomyces cerevisiae efficiently producing tyrosine].
    Liu T; Li Y; Zhang L; Ding Z; Gu Z; Shi G; Xu S
    Sheng Wu Gong Cheng Xue Bao; 2021 Sep; 37(9):3348-3360. PubMed ID: 34622641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the Level of the Tyrosine Biosynthesis Pathway in
    Cai M; Wu Y; Qi H; He J; Wu Z; Xu H; Qiao M
    ACS Synth Biol; 2021 Jan; 10(1):49-62. PubMed ID: 33395268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial synthesis of the plant natural product precursor p-coumaric acid with Corynebacterium glutamicum.
    Mutz M; Kösters D; Wynands B; Wierckx N; Marienhagen J
    Microb Cell Fact; 2023 Oct; 22(1):209. PubMed ID: 37833813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.