BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33164460)

  • 21. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 22. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterologous production of caffeic acid from tyrosine in Escherichia coli.
    Rodrigues JL; Araújo RG; Prather KL; Kluskens LD; Rodrigues LR
    Enzyme Microb Technol; 2015 Apr; 71():36-44. PubMed ID: 25765308
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Li Y; Mao J; Liu Q; Song X; Wu Y; Cai M; Xu H; Qiao M
    ACS Synth Biol; 2020 Apr; 9(4):756-765. PubMed ID: 32155331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Directed evolution of tyrosine ammonia-lyase to improve the production of p-coumaric acid in Escherichia coli].
    Huo Y; Wu F; Song G; Tu R; Chen W; Hua E; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2020 Nov; 36(11):2367-2376. PubMed ID: 33244931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering.
    Wang Y; Halls C; Zhang J; Matsuno M; Zhang Y; Yu O
    Metab Eng; 2011 Sep; 13(5):455-63. PubMed ID: 21570474
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid.
    Zhou P; Yue C; Shen B; Du Y; Xu N; Ye L
    Appl Microbiol Biotechnol; 2021 Aug; 105(14-15):5809-5819. PubMed ID: 34283270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of key enzymes ubiquitination sites on the biosynthesis of naringenin].
    Li M; Zhou J; Li J
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):691-704. PubMed ID: 35234391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-copy genome integration and stable production of p-coumaric acid via a POT1-mediated strategy in Saccharomyces cerevisiae.
    Qi H; Li Y; Cai M; He J; Liu J; Song X; Ma Z; Xu H; Qiao M
    J Appl Microbiol; 2022 Aug; 133(2):707-719. PubMed ID: 35462447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of metabolic pathway gene copy numbers on the biosynthesis of (2S)-naringenin in Saccharomyces cerevisiae.
    Li H; Gao S; Zhang S; Zeng W; Zhou J
    J Biotechnol; 2021 Jan; 325():119-127. PubMed ID: 33186660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae.
    Shin SY; Jung SM; Kim MD; Han NS; Seo JH
    Enzyme Microb Technol; 2012 Sep; 51(4):211-6. PubMed ID: 22883555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion.
    Lee D; Lloyd ND; Pretorius IS; Borneman AR
    Microb Cell Fact; 2016 Mar; 15():49. PubMed ID: 26944880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fine-tuning of p-coumaric acid synthesis to increase (2S)-naringenin production in yeast.
    Mao J; Mohedano MT; Fu J; Li X; Liu Q; Nielsen J; Siewers V; Chen Y
    Metab Eng; 2023 Sep; 79():192-202. PubMed ID: 37611820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combinatorial optimization of pathway, process and media for the production of p-coumaric acid by Saccharomyces cerevisiae.
    Moreno-Paz S; van der Hoek R; Eliana E; Martins Dos Santos VAP; Schmitz J; Suarez-Diez M
    Microb Biotechnol; 2024 Mar; 17(3):e14424. PubMed ID: 38528768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae.
    Jendresen CB; Stahlhut SG; Li M; Gaspar P; Siedler S; Förster J; Maury J; Borodina I; Nielsen AT
    Appl Environ Microbiol; 2015 Jul; 81(13):4458-76. PubMed ID: 25911487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic Metabolic Engineering of
    Shi B; Ma T; Ye Z; Li X; Huang Y; Zhou Z; Ding Y; Deng Z; Liu T
    J Agric Food Chem; 2019 Oct; 67(40):11148-11157. PubMed ID: 31532654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of Saccharomyces cerevisiae for high-level production of gastrodin from glucose.
    Yin H; Hu T; Zhuang Y; Liu T
    Microb Cell Fact; 2020 Nov; 19(1):218. PubMed ID: 33243241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes.
    Shin SY; Han NS; Park YC; Kim MD; Seo JH
    Enzyme Microb Technol; 2011 Jan; 48(1):48-53. PubMed ID: 22112770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpressing enzymes of the Ehrlich pathway and deleting genes of the competing pathway in Saccharomyces cerevisiae for increasing 2-phenylethanol production from glucose.
    Shen L; Nishimura Y; Matsuda F; Ishii J; Kondo A
    J Biosci Bioeng; 2016 Jul; 122(1):34-9. PubMed ID: 26975754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.