These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
542 related articles for article (PubMed ID: 33164502)
1. High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by Sequencing. Yokobayashi Y Acc Chem Res; 2020 Dec; 53(12):2903-2912. PubMed ID: 33164502 [TBL] [Abstract][Full Text] [Related]
2. Expanding the catalytic repertoire of ribozymes and deoxyribozymes beyond RNA substrates. Franzen S Curr Opin Mol Ther; 2010 Apr; 12(2):223-32. PubMed ID: 20373266 [TBL] [Abstract][Full Text] [Related]
3. High-Throughput Mutational Analysis of a Twister Ribozyme. Kobori S; Yokobayashi Y Angew Chem Int Ed Engl; 2016 Aug; 55(35):10354-7. PubMed ID: 27461281 [TBL] [Abstract][Full Text] [Related]
4. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Micura R; Höbartner C Chem Soc Rev; 2020 Oct; 49(20):7331-7353. PubMed ID: 32944725 [TBL] [Abstract][Full Text] [Related]
5. High-throughput assay and engineering of self-cleaving ribozymes by sequencing. Kobori S; Nomura Y; Miu A; Yokobayashi Y Nucleic Acids Res; 2015 Jul; 43(13):e85. PubMed ID: 25829176 [TBL] [Abstract][Full Text] [Related]
6. Large Scale Mutational and Kinetic Analysis of a Self-Hydrolyzing Deoxyribozyme. Dhamodharan V; Kobori S; Yokobayashi Y ACS Chem Biol; 2017 Dec; 12(12):2940-2945. PubMed ID: 29058875 [TBL] [Abstract][Full Text] [Related]
7. Applications of high-throughput sequencing to analyze and engineer ribozymes. Yokobayashi Y Methods; 2019 May; 161():41-45. PubMed ID: 30738128 [TBL] [Abstract][Full Text] [Related]
8. Conversion of a ribozyme to a deoxyribozyme through in vitro evolution. Paul N; Springsteen G; Joyce GF Chem Biol; 2006 Mar; 13(3):329-38. PubMed ID: 16638538 [TBL] [Abstract][Full Text] [Related]
9. Pushing the Limits of Nucleic Acid Function. Curtis EA Chemistry; 2022 Dec; 28(71):e202201737. PubMed ID: 35993619 [TBL] [Abstract][Full Text] [Related]
10. Pursuing DNA catalysts for protein modification. Silverman SK Acc Chem Res; 2015 May; 48(5):1369-79. PubMed ID: 25939889 [TBL] [Abstract][Full Text] [Related]
11. Catalytic DNA: Scope, Applications, and Biochemistry of Deoxyribozymes. Silverman SK Trends Biochem Sci; 2016 Jul; 41(7):595-609. PubMed ID: 27236301 [TBL] [Abstract][Full Text] [Related]
12. Generation and selection of ribozyme variants with potential application in protein engineering and synthetic biology. Balke D; Wichert C; Appel B; Müller S Appl Microbiol Biotechnol; 2014 Apr; 98(8):3389-99. PubMed ID: 24496571 [TBL] [Abstract][Full Text] [Related]
13. Prospects for antiviral ribozymes and deoxyribozymes. Peracchi A Rev Med Virol; 2004; 14(1):47-64. PubMed ID: 14716691 [TBL] [Abstract][Full Text] [Related]
14. Use of deoxyribozymes in RNA research. Silverman SK; Baum DA Methods Enzymol; 2009; 469():95-117. PubMed ID: 20946786 [TBL] [Abstract][Full Text] [Related]
16. Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Baum DA; Silverman SK Cell Mol Life Sci; 2008 Jul; 65(14):2156-74. PubMed ID: 18373062 [TBL] [Abstract][Full Text] [Related]
17. Nucleic acid enzymes based on functionalized nucleosides. Hollenstein M Curr Opin Chem Biol; 2019 Oct; 52():93-101. PubMed ID: 31307007 [TBL] [Abstract][Full Text] [Related]
18. High-Throughput Activity Profiling of RNA-Cleaving DNA Catalysts by Deoxyribozyme Sequencing (DZ-seq). Sednev MV; Liaqat A; Höbartner C J Am Chem Soc; 2022 Feb; 144(5):2090-2094. PubMed ID: 35081311 [TBL] [Abstract][Full Text] [Related]
19. Deoxyribozymes: selection design and serendipity in the development of DNA catalysts. Silverman SK Acc Chem Res; 2009 Oct; 42(10):1521-31. PubMed ID: 19572701 [TBL] [Abstract][Full Text] [Related]
20. Deoxyribozymes: DNA catalysts for bioorganic chemistry. Silverman SK Org Biomol Chem; 2004 Oct; 2(19):2701-6. PubMed ID: 15455136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]