BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33164512)

  • 1. Using Mie Scattering to Determine the Wavelength-Dependent Refractive Index of Polystyrene Beads with Changing Temperature.
    McGrory MR; King MD; Ward AD
    J Phys Chem A; 2020 Nov; 124(46):9617-9625. PubMed ID: 33164512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the unique refractive index properties of solid polystyrene aerosol using broadband Mie scattering from optically trapped beads.
    Jones SH; King MD; Ward AD
    Phys Chem Chem Phys; 2013 Dec; 15(47):20735-41. PubMed ID: 24196002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mie scattering from optically levitated mixed sulfuric acid-silica core-shell aerosols: observation of core-shell morphology for atmospheric science.
    McGrory MR; Shepherd RH; King MD; Davidson N; Pope FD; Watson IM; Grainger RG; Jones AC; Ward AD
    Phys Chem Chem Phys; 2022 Mar; 24(10):5813-5822. PubMed ID: 35226003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of uncertainties in the diameter and refractive index of calibration polystyrene beads on the retrieval of aerosol optical properties using cavity ring down spectroscopy.
    Miles RE; Rudić S; Orr-Ewing AJ; Reid JP
    J Phys Chem A; 2010 Jul; 114(26):7077-84. PubMed ID: 20545374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of refractive index, size, and solid content of monodisperse polystyrene microsphere suspensions for the characterization of optical phantoms.
    Naglič P; Zelinskyi Y; Likar B; Bürmen M
    Biomed Opt Express; 2020 Apr; 11(4):1901-1918. PubMed ID: 32341856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraviolet broadband light scattering for optically-trapped submicron-sized aerosol particles.
    David G; Esat K; Ritsch I; Signorell R
    Phys Chem Chem Phys; 2016 Feb; 18(7):5477-85. PubMed ID: 26863396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the size and refractive index of homogeneous spherical aerosol particles using Mie resonance spectroscopy.
    Lew LJN; Ting MV; Preston TC
    Appl Opt; 2018 Jun; 57(16):4601-4609. PubMed ID: 29877369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy.
    Cotterell MI; Mason BJ; Preston TC; Orr-Ewing AJ; Reid JP
    Phys Chem Chem Phys; 2015 Jun; 17(24):15843-56. PubMed ID: 26018300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size and Refractive Index Determination of Single Polystyrene Spheres.
    Marx E; Mulholland GW
    J Res Natl Bur Stand (1977); 1983; 88(5):321-338. PubMed ID: 34566108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deviations from plane-wave Mie scattering and precise retrieval of refractive index for a single spherical particle in an optical cavity.
    Mason BJ; Walker JS; Reid JP; Orr-Ewing AJ
    J Phys Chem A; 2014 Mar; 118(11):2083-8. PubMed ID: 24580563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicted light scattering from particles observed in human age-related nuclear cataracts using mie scattering theory.
    Costello MJ; Johnsen S; Gilliland KO; Freel CD; Fowler WC
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):303-12. PubMed ID: 17197547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atmospherically relevant core-shell aerosol studied using optical trapping and Mie scattering.
    Jones SH; King MD; Ward AD
    Chem Commun (Camb); 2015 Mar; 51(23):4914-7. PubMed ID: 25702629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex refractive indices of thin films of secondary organic materials by spectroscopic ellipsometry from 220 to 1200 nm.
    Liu P; Zhang Y; Martin ST
    Environ Sci Technol; 2013; 47(23):13594-601. PubMed ID: 24191734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-induced heating in optical traps.
    Peterman EJ; Gittes F; Schmidt CF
    Biophys J; 2003 Feb; 84(2 Pt 1):1308-16. PubMed ID: 12547811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data.
    Chylek P; Ramaswamy V; Ashkin A; Dziedzic JM
    Appl Opt; 1983 Aug; 22(15):2302-7. PubMed ID: 18196128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm.
    Zhao W; Dong M; Chen W; Gu X; Hu C; Gao X; Huang W; Zhang W
    Anal Chem; 2013 Feb; 85(4):2260-8. PubMed ID: 23320530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet refractometry using field-based light scattering spectroscopy.
    Fu D; Choi W; Sung Y; Oh S; Yaqoob Z; Park Y; Dasari RR; Feld MS
    Opt Express; 2009 Oct; 17(21):18878-86. PubMed ID: 20372622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring the size and complex refractive index of an aqueous aerosol particle using electromagnetic heating and cavity-enhanced Raman scattering.
    Rafferty A; Preston TC
    Phys Chem Chem Phys; 2018 Jun; 20(25):17038-17047. PubMed ID: 29911705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle-size determination by low-angle light scattering: effect of refractive index.
    Meehan EJ; Gyberg AE
    Appl Opt; 1973 Mar; 12(3):551-4. PubMed ID: 20125342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.