BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33165328)

  • 1. Assessing Cardiac Reprogramming using High Content Imaging Analysis.
    Zhang Z; Nam YJ
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33165328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro Assessment of Cardiac Reprogramming by Measuring Cardiac Specific Calcium Flux with a GCaMP3 Reporter.
    Li Z; Liu L; Wang Z
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35285824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Future of Direct Cardiac Reprogramming: Any
    López-Muneta L; Miranda-Arrubla J; Carvajal-Vergara X
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single cell qPCR reveals that additional HAND2 and microRNA-1 facilitate the early reprogramming progress of seven-factor-induced human myocytes.
    Bektik E; Dennis A; Prasanna P; Madabhushi A; Fu JD
    PLoS One; 2017; 12(8):e0183000. PubMed ID: 28796841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Cardiomyocyte-Like Cells by Fibroblast Reprogramming with Defined Factors.
    Bektik E; Fu JD
    Methods Mol Biol; 2021; 2239():33-46. PubMed ID: 33226611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensuring expression of four core cardiogenic transcription factors enhances cardiac reprogramming.
    Zhang Z; Zhang AD; Kim LJ; Nam YJ
    Sci Rep; 2019 Apr; 9(1):6362. PubMed ID: 31019236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Conversion of Murine Fibroblasts into Cardiomyocyte-Like Cells.
    Xu J; Wang L; Liu J; Qian L
    Methods Mol Biol; 2021; 2158():155-170. PubMed ID: 32857372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of Pro-fibrotic Signaling Potentiates Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts into Induced Cardiomyocytes.
    Riching AS; Zhao Y; Cao Y; Londono P; Xu H; Song K
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 29912202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes.
    Liu Z; Chen O; Zheng M; Wang L; Zhou Y; Yin C; Liu J; Qian L
    Stem Cell Res; 2016 Mar; 16(2):507-18. PubMed ID: 26957038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Cardiomyocyte Subtypes Following Transcription Factor-mediated Reprogramming of Mouse Embryonic Fibroblasts.
    Fernandez-Perez A; Munshi NV
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures.
    Muraoka N; Yamakawa H; Miyamoto K; Sadahiro T; Umei T; Isomi M; Nakashima H; Akiyama M; Wada R; Inagawa K; Nishiyama T; Kaneda R; Fukuda T; Takeda S; Tohyama S; Hashimoto H; Kawamura Y; Goshima N; Aeba R; Yamagishi H; Fukuda K; Ieda M
    EMBO J; 2014 Jul; 33(14):1565-81. PubMed ID: 24920580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosters and barriers for direct cardiac reprogramming.
    Talkhabi M; Zonooz ER; Baharvand H
    Life Sci; 2017 Jun; 178():70-86. PubMed ID: 28427897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.
    Liu Z; Wang L; Welch JD; Ma H; Zhou Y; Vaseghi HR; Yu S; Wall JB; Alimohamadi S; Zheng M; Yin C; Shen W; Prins JF; Liu J; Qian L
    Nature; 2017 Nov; 551(7678):100-104. PubMed ID: 29072293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes.
    Zhou H; Dickson ME; Kim MS; Bassel-Duby R; Olson EN
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11864-9. PubMed ID: 26354121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chamber-Specific Protein Expression during Direct Cardiac Reprogramming.
    Zhang Z; Villalpando J; Zhang W; Nam YJ
    Cells; 2021 Jun; 10(6):. PubMed ID: 34208439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-phase Synchronization Facilitates the Early Progression of Induced-Cardiomyocyte Reprogramming through Enhanced Cell-Cycle Exit.
    Bektik E; Dennis A; Pawlowski G; Zhou C; Maleski D; Takahashi S; Laurita KR; Deschênes I; Fu JD
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.
    Yamakawa H; Muraoka N; Miyamoto K; Sadahiro T; Isomi M; Haginiwa S; Kojima H; Umei T; Akiyama M; Kuishi Y; Kurokawa J; Furukawa T; Fukuda K; Ieda M
    Stem Cell Reports; 2015 Dec; 5(6):1128-1142. PubMed ID: 26626177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reprogramming of Non-myocytes into Cardiomyocyte-like Cells: Challenges and Opportunities.
    Farber G; Qian L
    Curr Cardiol Rep; 2020 Jun; 22(8):54. PubMed ID: 32562156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isoform Specific Effects of Mef2C during Direct Cardiac Reprogramming.
    Wang L; Huang P; Near D; Ravi K; Xu Y; Liu J; Qian L
    Cells; 2020 Jan; 9(2):. PubMed ID: 31979018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Cardiac Reprogramming as a Novel Therapeutic Strategy for Treatment of Myocardial Infarction.
    Ma H; Wang L; Liu J; Qian L
    Methods Mol Biol; 2017; 1521():69-88. PubMed ID: 27910042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.