These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 33165456)

  • 1. When rare earth meets carbon nanodots: mechanisms, applications and outlook.
    Zhang M; Zhai X; Sun M; Ma T; Huang Y; Huang B; Du Y; Yan C
    Chem Soc Rev; 2020 Dec; 49(24):9220-9248. PubMed ID: 33165456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Persistent Luminescence Nanoparticles for Biological Applications: From Biosensing/Bioimaging to Theranostics.
    Sun SK; Wang HF; Yan XP
    Acc Chem Res; 2018 May; 51(5):1131-1143. PubMed ID: 29664602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiway data analysis approach toward understanding of photoluminescence and energy transfer in carbon nanodots.
    Bagheri S; Kompany-Zareh M; Karimpour T
    Luminescence; 2020 May; 35(3):385-392. PubMed ID: 31896165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot green hydrothermal synthesis of fluorescent nitrogen-doped carbon nanodots for in vivo bioimaging.
    Kuo TR; Sung SY; Hsu CW; Chang CJ; Chiu TC; Hu CC
    Anal Bioanal Chem; 2016 Jan; 408(1):77-82. PubMed ID: 26514673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation-Induced Emission (AIE) Dots: Emerging Theranostic Nanolights.
    Feng G; Liu B
    Acc Chem Res; 2018 Jun; 51(6):1404-1414. PubMed ID: 29733571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges.
    Du F; Yang LP; Wang LL
    J Mater Chem B; 2023 Aug; 11(34):8117-8135. PubMed ID: 37555267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Carbon Nanodots: A Promising Nanomaterial for Biomedical Applications.
    Khan S; Dunphy A; Anike MS; Belperain S; Patel K; Chiu NHL; Jia Z
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fluorescence-electrochemical study of carbon nanodots (CNDs) in bio- and photoelectronic applications and energy gap investigation.
    Zeng Z; Zhang W; Arvapalli DM; Bloom B; Sheardy A; Mabe T; Liu Y; Ji Z; Chevva H; Waldeck DH; Wei J
    Phys Chem Chem Phys; 2017 Aug; 19(30):20101-20109. PubMed ID: 28726895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon dots-inspired fluorescent cyclodextrins: competitive supramolecular "off-on" (bio)sensors.
    De Los Reyes-Berbel E; Ortiz-Gomez I; Ortega-Muñoz M; Salinas-Castillo A; Capitan-Vallvey LF; Hernandez-Mateo F; Lopez-Jaramillo FJ; Santoyo-Gonzalez F
    Nanoscale; 2020 Apr; 12(16):9178-9185. PubMed ID: 32297891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Fluorescence Imaging of the Near-Infrared II Window.
    Miao Y; Gu C; Zhu Y; Yu B; Shen Y; Cong H
    Chembiochem; 2018 Dec; 19(24):2522-2541. PubMed ID: 30247795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled functionalization of carbon nanodots for targeted intracellular production of reactive oxygen species.
    Ji DK; Reina G; Guo S; Eredia M; Samorì P; Ménard-Moyon C; Bianco A
    Nanoscale Horiz; 2020 Jul; 5(8):1240-1249. PubMed ID: 32555842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-entropy rare earth materials: synthesis, application and outlook.
    Fu H; Jiang Y; Zhang M; Zhong Z; Liang Z; Wang S; Du Y; Yan C
    Chem Soc Rev; 2024 Feb; 53(4):2211-2247. PubMed ID: 38240305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent turn-off/on bioassay for hemoglobin based on dual-emission carbon nanodots-graphene oxide system with multi-detection strategies.
    Qu F; Liu D; You J
    Anal Chim Acta; 2016 May; 921():59-66. PubMed ID: 27126790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid synthesis of multifunctional carbon nanodots as effective antioxidants, antibacterial agents, and quercetin nanoprobes.
    Du F; Shuang S; Guo Z; Gong X; Dong C; Xian M; Yang Z
    Talanta; 2020 Jan; 206():120243. PubMed ID: 31514864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue photoluminescent carbon nanodots from limeade.
    Suvarnaphaet P; Tiwary CS; Wetcharungsri J; Porntheeraphat S; Hoonsawat R; Ajayan PM; Tang IM; Asanithi P
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():914-21. PubMed ID: 27612786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Nanodots from an In Silico Perspective.
    Mocci F; de Villiers Engelbrecht L; Olla C; Cappai A; Casula MF; Melis C; Stagi L; Laaksonen A; Carbonaro CM
    Chem Rev; 2022 Aug; 122(16):13709-13799. PubMed ID: 35948072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A label-free multifunctional nanosensor based on N-doped carbon nanodots for vitamin B
    Du F; Cheng Z; Kremer M; Liu Y; Wang X; Shuang S; Dong C
    J Mater Chem B; 2020 Jun; 8(23):5089-5095. PubMed ID: 32406457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in carbon nanodots: synthesis, properties and biomedical applications.
    Miao P; Han K; Tang Y; Wang B; Lin T; Cheng W
    Nanoscale; 2015 Feb; 7(5):1586-95. PubMed ID: 25510876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Black Phosphorus Quantum Dots Gated, Carbon-Coated Fe
    Zhang M; Wang W; Wu F; Graveran K; Zhang J; Wu C
    Chemistry; 2018 Sep; 24(49):12890-12901. PubMed ID: 29855103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The advanced role of carbon quantum dots in nanomedical applications.
    Devi P; Saini S; Kim KH
    Biosens Bioelectron; 2019 Sep; 141():111158. PubMed ID: 31323605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.