BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33165508)

  • 21. RUBICON: a framework for designing efficient deep learning-based genomic basecallers.
    Singh G; Alser M; Denolf K; Firtina C; Khodamoradi A; Cavlak MB; Corporaal H; Mutlu O
    Genome Biol; 2024 Feb; 25(1):49. PubMed ID: 38365730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NanoReviser: An Error-Correction Tool for Nanopore Sequencing Based on a Deep Learning Algorithm.
    Wang L; Qu L; Yang L; Wang Y; Zhu H
    Front Genet; 2020; 11():900. PubMed ID: 32903372
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Penguin: A tool for predicting pseudouridine sites in direct RNA nanopore sequencing data.
    Hassan D; Acevedo D; Daulatabad SV; Mir Q; Janga SC
    Methods; 2022 Jul; 203():478-487. PubMed ID: 35182749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time mapping of nanopore raw signals.
    Zhang H; Li H; Jain C; Cheng H; Au KF; Li H; Aluru S
    Bioinformatics; 2021 Jul; 37(Suppl_1):i477-i483. PubMed ID: 34252938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NanoSplicer: accurate identification of splice junctions using Oxford Nanopore sequencing.
    You Y; Clark MB; Shim H
    Bioinformatics; 2022 Aug; 38(15):3741-3748. PubMed ID: 35639973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanopore Long Read DNA Sequencing of Protozoan Parasites: Hybrid Genome Assembly of Trypanosoma cruzi.
    Díaz-Viraqué F; Greif G; Berná L; Robello C
    Methods Mol Biol; 2021; 2369():3-13. PubMed ID: 34313980
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DeepMP: a deep learning tool to detect DNA base modifications on Nanopore sequencing data.
    Bonet J; Chen M; Dabad M; Heath S; Gonzalez-Perez A; Lopez-Bigas N; Lagergren J
    Bioinformatics; 2022 Feb; 38(5):1235-1243. PubMed ID: 34718417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequoia: an interactive visual analytics platform for interpretation and feature extraction from nanopore sequencing datasets.
    Koonchanok R; Daulatabad SV; Mir Q; Reda K; Janga SC
    BMC Genomics; 2021 Jul; 22(1):513. PubMed ID: 34233619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying and correcting repeat-calling errors in nanopore sequencing of telomeres.
    Tan KT; Slevin MK; Meyerson M; Li H
    Genome Biol; 2022 Aug; 23(1):180. PubMed ID: 36028900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PBSIM2: a simulator for long-read sequencers with a novel generative model of quality scores.
    Ono Y; Asai K; Hamada M
    Bioinformatics; 2021 May; 37(5):589-595. PubMed ID: 32976553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NanoMod: a computational tool to detect DNA modifications using Nanopore long-read sequencing data.
    Liu Q; Georgieva DC; Egli D; Wang K
    BMC Genomics; 2019 Feb; 20(Suppl 1):78. PubMed ID: 30712508
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NanoCLUST: a species-level analysis of 16S rRNA nanopore sequencing data.
    Rodríguez-Pérez H; Ciuffreda L; Flores C
    Bioinformatics; 2021 Jul; 37(11):1600-1601. PubMed ID: 33079990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lokatt: a hybrid DNA nanopore basecaller with an explicit duration hidden Markov model and a residual LSTM network.
    Xu X; Bhalla N; Ståhl P; Jaldén J
    BMC Bioinformatics; 2023 Dec; 24(1):461. PubMed ID: 38062356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanopore basecalling from a perspective of instance segmentation.
    Zhang YZ; Akdemir A; Tremmel G; Imoto S; Miyano S; Shibuya T; Yamaguchi R
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):136. PubMed ID: 32321433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GAVISUNK: genome assembly validation via inter-SUNK distances in Oxford Nanopore reads.
    Dishuck PC; Rozanski AN; Logsdon GA; Porubsky D; Eichler EE
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36321867
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consistent ultra-long DNA sequencing with automated slow pipetting.
    Prall TM; Neumann EK; Karl JA; Shortreed CG; Baker DA; Bussan HE; Wiseman RW; O'Connor DH
    BMC Genomics; 2021 Mar; 22(1):182. PubMed ID: 33711930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads.
    Kranz A; Vogel A; Degner U; Kiefler I; Bott M; Usadel B; Polen T
    J Biotechnol; 2017 Sep; 258():197-205. PubMed ID: 28433722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DCHap: A Divide-and-Conquer Haplotype Phasing Algorithm for Third-Generation Sequences.
    Li Y; Lin Y
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1277-1284. PubMed ID: 32750878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. VirPipe: an easy-to-use and customizable pipeline for detecting viral genomes from Nanopore sequencing.
    Kim K; Park K; Lee S; Baek SH; Lim TH; Kim J; Manavalan B; Song JW; Kim WK
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37129547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal data.
    Wan YK; Hendra C; Pratanwanich PN; Göke J
    Trends Genet; 2022 Mar; 38(3):246-257. PubMed ID: 34711425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.