These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33166001)

  • 1. Structural motifs in protein cores and at protein-protein interfaces are different.
    Hadarovich A; Chakravarty D; Tuzikov AV; Ben-Tal N; Kundrotas PJ; Vakser IA
    Protein Sci; 2021 Feb; 30(2):381-390. PubMed ID: 33166001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein interactions leave evolutionary footprints: High molecular coevolution at the core of interfaces.
    Teppa E; Zea DJ; Marino-Buslje C
    Protein Sci; 2017 Dec; 26(12):2438-2444. PubMed ID: 28980349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural alignment of protein--DNA interfaces: insights into the determinants of binding specificity.
    Siggers TW; Silkov A; Honig B
    J Mol Biol; 2005 Feb; 345(5):1027-45. PubMed ID: 15644202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking.
    Chakravarty D; McElfresh GW; Kundrotas PJ; Vakser IA
    Proteins; 2020 Aug; 88(8):1070-1081. PubMed ID: 31994759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone.
    Rodriguez-Rivas J; Marsili S; Juan D; Valencia A
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):15018-15023. PubMed ID: 27965389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global and local structural similarity in protein-protein complexes: implications for template-based docking.
    Kundrotas PJ; Vakser IA
    Proteins; 2013 Dec; 81(12):2137-42. PubMed ID: 23946125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A benchmark testing ground for integrating homology modeling and protein docking.
    Bohnuud T; Luo L; Wodak SJ; Bonvin AM; Weng Z; Vajda S; Schueler-Furman O; Kozakov D
    Proteins; 2017 Jan; 85(1):10-16. PubMed ID: 27172383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual Analysis of Protein-Protein Interaction Docking Models Using COZOID Tool.
    Byska J; Jurcik A; Furmanova K; Kozlikova B; Palecek JJ
    Methods Mol Biol; 2020; 2074():81-94. PubMed ID: 31583632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blind predictions of protein interfaces by docking calculations in CAPRI.
    Lensink MF; Wodak SJ
    Proteins; 2010 Nov; 78(15):3085-95. PubMed ID: 20839234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Docking by structural similarity at protein-protein interfaces.
    Sinha R; Kundrotas PJ; Vakser IA
    Proteins; 2010 Nov; 78(15):3235-41. PubMed ID: 20715056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using restraints in EROS-DOCK improves model quality in pairwise and multicomponent protein docking.
    Ruiz Echartea ME; Ritchie DW; Chauvot de BeauchĂȘne I
    Proteins; 2020 Aug; 88(8):1121-1128. PubMed ID: 32506478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GWYRE: A Resource for Mapping Variants onto Experimental and Modeled Structures of Human Protein Complexes.
    Malladi S; Powell HR; David A; Islam SA; Copeland MM; Kundrotas PJ; Sternberg MJE; Vakser IA
    J Mol Biol; 2022 Jun; 434(11):167608. PubMed ID: 35662458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM.
    Tuncbag N; Gursoy A; Nussinov R; Keskin O
    Nat Protoc; 2011 Aug; 6(9):1341-54. PubMed ID: 21886100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein docking by the interface structure similarity: how much structure is needed?
    Sinha R; Kundrotas PJ; Vakser IA
    PLoS One; 2012; 7(2):e31349. PubMed ID: 22348074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35.
    Yu J; Andreani J; Ochsenbein F; Guerois R
    Proteins; 2017 Mar; 85(3):378-390. PubMed ID: 27701780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of inter-protein residue-residue contacts for homo-oligomeric protein complexes.
    Yan Y; Huang SY
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33693482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis.
    Gueudré T; Baldassi C; Zamparo M; Weigt M; Pagnani A
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12186-12191. PubMed ID: 27729520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinguishing crystallographic from biological interfaces in protein complexes: role of intermolecular contacts and energetics for classification.
    Elez K; Bonvin AMJJ; Vangone A
    BMC Bioinformatics; 2018 Nov; 19(Suppl 15):438. PubMed ID: 30497368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCOWLP: a web-based database for detailed characterization and visualization of protein interfaces.
    Teyra J; Doms A; Schroeder M; Pisabarro MT
    BMC Bioinformatics; 2006 Mar; 7():104. PubMed ID: 16512892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of protein interactions: from interactomes to interfaces.
    Andreani J; Guerois R
    Arch Biochem Biophys; 2014 Jul; 554():65-75. PubMed ID: 24853495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.