BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 33166037)

  • 1. Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode.
    Ghosh K; Ng S; Iffelsberger C; Pumera M
    Chemistry; 2020 Dec; 26(67):15746-15753. PubMed ID: 33166037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impurities in graphene/PLA 3D-printing filaments dramatically influence the electrochemical properties of the devices.
    Browne MP; Pumera M
    Chem Commun (Camb); 2019 Jul; 55(58):8374-8377. PubMed ID: 31243418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printed Graphene Based Energy Storage Devices.
    Foster CW; Down MP; Zhang Y; Ji X; Rowley-Neale SJ; Smith GC; Kelly PJ; Banks CE
    Sci Rep; 2017 Mar; 7():42233. PubMed ID: 28256602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture.
    Caminero MÁ; Chacón JM; García-Plaza E; Núñez PJ; Reverte JM; Becar JP
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31060241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing.
    Novotný F; Urbanová V; Plutnar J; Pumera M
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35371-35375. PubMed ID: 31525017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Electrical Heating Performance of CFDM 3D-Printed Graphene/Polylactic Acid (PLA) Horseshoe Pattern with Different 3D Printing Directions.
    Kim H; Lee S
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures.
    Manzanares-Palenzuela CL; Hermanova S; Sofer Z; Pumera M
    Nanoscale; 2019 Jul; 11(25):12124-12131. PubMed ID: 31211311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D-printing pen versus desktop 3D-printers: Fabrication of carbon black/polylactic acid electrodes for single-drop detection of 2,4,6-trinitrotoluene.
    Cardoso RM; Rocha DP; Rocha RG; Stefano JS; Silva RAB; Richter EM; Muñoz RAA
    Anal Chim Acta; 2020 Oct; 1132():10-19. PubMed ID: 32980099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed graphene direct electron transfer enzyme biosensors.
    López Marzo AM; Mayorga-Martinez CC; Pumera M
    Biosens Bioelectron; 2020 Mar; 151():111980. PubMed ID: 31999587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications.
    Silva VAOP; Fernandes-Junior WS; Rocha DP; Stefano JS; Munoz RAA; Bonacin JA; Janegitz BC
    Biosens Bioelectron; 2020 Dec; 170():112684. PubMed ID: 33049481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical synthesis of Prussian blue from iron impurities in 3D-printed graphene electrodes: Amperometric sensing platform for hydrogen peroxide.
    Rocha RG; Stefano JS; Cardoso RM; Zambiazi PJ; Bonacin JA; Richter EM; Munoz RAA
    Talanta; 2020 Nov; 219():121289. PubMed ID: 32887031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printed silicon-few layer graphene anode for advanced Li-ion batteries.
    Beydaghi H; Abouali S; Thorat SB; Del Rio Castillo AE; Bellani S; Lauciello S; Gentiluomo S; Pellegrini V; Bonaccorso F
    RSC Adv; 2021 Oct; 11(56):35051-35060. PubMed ID: 35493174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi sensor compatible 3D-printed electrochemical cell for voltammetric drug screening.
    Ferreira PA; de Oliveira FM; de Melo EI; de Carvalho AE; Lucca BG; Ferreira VS; da Silva RAB
    Anal Chim Acta; 2021 Jul; 1169():338568. PubMed ID: 34088376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the coating of 3D-printed insulating substrates with conductive composites: a simple, cheap and versatile strategy to prepare customized high-performance electrochemical sensors.
    de Oliveira FM; Mendonça MZM; de Moraes NC; Petroni JM; Neves MM; de Melo EI; Lucca BG; Bezerra da Silva RA
    Anal Methods; 2022 Sep; 14(34):3345-3354. PubMed ID: 35979860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrically Conducting and Mechanically Strong Graphene-Polylactic Acid Composites for 3D Printing.
    Kim M; Jeong JH; Lee JY; Capasso A; Bonaccorso F; Kang SH; Lee YK; Lee GH
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11841-11848. PubMed ID: 30810305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Printed Electrode and Its Novel Applications in Electronic Devices.
    Foo CY; Lim HN; Mahdi MA; Wahid MH; Huang NM
    Sci Rep; 2018 May; 8(1):7399. PubMed ID: 29743664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printed Graphene Electrodes' Electrochemical Activation.
    Browne MP; Novotný F; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40294-40301. PubMed ID: 30398834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks.
    Rocha VG; García-Tuñón E; Botas C; Markoulidis F; Feilden E; D'Elia E; Ni N; Shaffer M; Saiz E
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37136-37145. PubMed ID: 28920439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles.
    Rocha RG; Cardoso RM; Zambiazi PJ; Castro SVF; Ferraz TVB; Aparecido GO; Bonacin JA; Munoz RAA; Richter EM
    Anal Chim Acta; 2020 Oct; 1132():1-9. PubMed ID: 32980098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GO-graphene ink-derived hierarchical 3D-graphene architecture supported Fe
    Zhao X; Jia Y; Liu ZH
    J Colloid Interface Sci; 2019 Feb; 536():463-473. PubMed ID: 30384052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.