These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33166078)

  • 21. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suitability of Gelatin Methacrylate and Hydroxyapatite Hydrogels for 3D-Bioprinted Bone Tissue.
    Stolarov P; de Vries J; Stapleton S; Morris L; Martyniak K; Kean TJ
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473692
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioprinting EphrinB2-Modified Dental Pulp Stem Cells with Enhanced Osteogenic Capacity for Alveolar Bone Engineering.
    Wang W; Zhu Y; Li J; Geng T; Jia J; Wang X; Yuan C; Wang P
    Tissue Eng Part A; 2023 Apr; 29(7-8):244-255. PubMed ID: 36606680
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds.
    Yang J; Li Z; Li S; Zhang Q; Zhou X; He C
    Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation.
    Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D
    Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Printability, Durability, Contractility and Vascular Network Formation in 3D Bioprinted Cardiac Endothelial Cells Using Alginate-Gelatin Hydrogels.
    Roche CD; Sharma P; Ashton AW; Jackson C; Xue M; Gentile C
    Front Bioeng Biotechnol; 2021; 9():636257. PubMed ID: 33748085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink.
    Song K; Ren B; Zhai Y; Chai W; Huang Y
    Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34823234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation.
    Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR
    ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication.
    Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K
    Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink.
    Jin R; Cui Y; Chen H; Zhang Z; Weng T; Xia S; Yu M; Zhang W; Shao J; Yang M; Han C; Wang X
    Acta Biomater; 2021 Sep; 131():248-261. PubMed ID: 34265473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs.
    Liu S; Kilian D; Ahlfeld T; Hu Q; Gelinsky M
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36735961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting.
    Feng Q; Li D; Li Q; Li H; Wang Z; Zhu S; Lin Z; Cao X; Dong H
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15653-15666. PubMed ID: 35344348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent.
    Mahdavi SS; Abdekhodaie MJ; Kumar H; Mashayekhan S; Baradaran-Rafii A; Kim K
    Ann Biomed Eng; 2020 Jul; 48(7):1955-1970. PubMed ID: 32504140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting.
    Hossain Rakin R; Kumar H; Rajeev A; Natale G; Menard F; Li ITS; Kim K
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink.
    Wu Y; Wenger A; Golzar H; Tang XS
    Sci Rep; 2020 Nov; 10(1):20648. PubMed ID: 33244046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequential Cross-linking of Gallic Acid-Functionalized GelMA-Based Bioinks with Enhanced Printability for Extrusion-Based 3D Bioprinting.
    Jongprasitkul H; Turunen S; Parihar VS; Kellomäki M
    Biomacromolecules; 2023 Jan; 24(1):502-514. PubMed ID: 36544430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs.
    Raveendran N; Ivanovski S; Vaquette C
    Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D bioprinting by reinforced bioink based on photocurable interpenetrating networks for cartilage tissue engineering.
    Shen J; Song W; Liu J; Peng X; Tan Z; Xu Y; Liu S; Ren L
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127671. PubMed ID: 37884244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.