BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 33166399)

  • 1. Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence.
    Allmann S; Mayer L; Olma J; Kaina B; Hofmann TG; Tomicic MT; Christmann M
    Nucleic Acids Res; 2020 Dec; 48(21):12085-12101. PubMed ID: 33166399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temozolomide Induces Senescence and Repression of DNA Repair Pathways in Glioblastoma Cells via Activation of ATR-CHK1, p21, and NF-κB.
    Aasland D; Götzinger L; Hauck L; Berte N; Meyer J; Effenberger M; Schneider S; Reuber EE; Roos WP; Tomicic MT; Kaina B; Christmann M
    Cancer Res; 2019 Jan; 79(1):99-113. PubMed ID: 30361254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Senescence-dependent MutS alpha dysfunction attenuates mismatch repair.
    Chang IY; Jin M; Yoon SP; Youn CK; Yoon Y; Moon SP; Hyun JW; Jun JY; You HJ
    Mol Cancer Res; 2008 Jun; 6(6):978-89. PubMed ID: 18567801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bleomycin induces senescence and repression of DNA repair via downregulation of Rad51.
    Chen F; Zhao W; Du C; Chen Z; Du J; Zhou M
    Mol Med; 2024 Apr; 30(1):54. PubMed ID: 38649802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation.
    Uxa S; Bernhart SH; Mages CFS; Fischer M; Kohler R; Hoffmann S; Stadler PF; Engeland K; Müller GA
    Nucleic Acids Res; 2019 Sep; 47(17):9087-9103. PubMed ID: 31400114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exonuclease 1 (Exo1) is required for activating response to S(N)1 DNA methylating agents.
    Izumchenko E; Saydi J; Brown KD
    DNA Repair (Amst); 2012 Dec; 11(12):951-64. PubMed ID: 23062884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation between p21 and Akt is required for p53-dependent cellular senescence.
    Kim YY; Jee HJ; Um JH; Kim YM; Bae SS; Yun J
    Aging Cell; 2017 Oct; 16(5):1094-1103. PubMed ID: 28691365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of dibenzo[a,1]pyrene and benzo[a]pyrene on human diploid lung fibroblasts: the induction of DNA adducts, expression of p53 and p21(WAF1) proteins and cell cycle distribution.
    Binková B; Giguère Y; Rössner P; Dostál M; Srám RJ
    Mutat Res; 2000 Nov; 471(1-2):57-70. PubMed ID: 11080661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin C inhibits benzo[a]pyrene-induced cell cycle changes partly via cyclin D1/E2F pathway in human embryo lung fibroblasts.
    Gao A; Liu BC; Shit XL; Huang CS; Jia XW; You BR; Ye M; Shen FH; Du HJ
    Biomed Environ Sci; 2006 Jun; 19(3):239-44. PubMed ID: 16944783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of essential transcription factors for adequate DNA damage response after benzo(a)pyrene and aflatoxin B1 exposure by combining transcriptomics with functional genomics.
    Smit E; Souza T; Jennen DGJ; Kleinjans JCS; van den Beucken T
    Toxicology; 2017 Sep; 390():74-82. PubMed ID: 28882572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E2F1-dependent pathways are involved in amonafide analogue 7-d-induced DNA damage, G2/M arrest, and apoptosis in p53-deficient K562 cells.
    Li Y; Shao J; Shen K; Xu Y; Liu J; Qian X
    J Cell Biochem; 2012 Oct; 113(10):3165-77. PubMed ID: 22593008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced sensitivity to anti-benzo(a)pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells.
    Wani MA; Zhu Q; El-Mahdy M; Venkatachalam S; Wani AA
    Cancer Res; 2000 Apr; 60(8):2273-80. PubMed ID: 10786695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The PPARγ-SETD8 axis constitutes an epigenetic, p53-independent checkpoint on p21-mediated cellular senescence.
    Shih CT; Chang YF; Chen YT; Ma CP; Chen HW; Yang CC; Lu JC; Tsai YS; Chen HC; Tan BC
    Aging Cell; 2017 Aug; 16(4):797-813. PubMed ID: 28514051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzo[α]pyrene repressed DNA mismatch repair in human breast cancer cells.
    Chen Y; Huang C; Bai C; Gao H; Ma R; Liu X; Dong Q
    Toxicology; 2013 Feb; 304():167-72. PubMed ID: 23313663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senescence sensitivity of breast cancer cells is defined by positive feedback loop between CIP2A and E2F1.
    Laine A; Sihto H; Come C; Rosenfeldt MT; Zwolinska A; Niemelä M; Khanna A; Chan EK; Kähäri VM; Kellokumpu-Lehtinen PL; Sansom OJ; Evan GI; Junttila MR; Ryan KM; Marine JC; Joensuu H; Westermarck J
    Cancer Discov; 2013 Feb; 3(2):182-97. PubMed ID: 23306062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous expression of MMB-FOXM1 complex components enables efficient bypass of senescence.
    Kumari R; Hummerich H; Shen X; Fischer M; Litovchick L; Mittnacht S; DeCaprio JA; Jat PS
    Sci Rep; 2021 Nov; 11(1):21506. PubMed ID: 34728711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. E2F1 induces MRN foci formation and a cell cycle checkpoint response in human fibroblasts.
    Frame FM; Rogoff HA; Pickering MT; Cress WD; Kowalik TF
    Oncogene; 2006 Jun; 25(23):3258-66. PubMed ID: 16434972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O(6)-methylguanine due to high E2F1 regulated mismatch repair.
    Roos WP; Christmann M; Fraser ST; Kaina B
    Cell Death Differ; 2007 Aug; 14(8):1422-32. PubMed ID: 17464330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect p53-dependent transcriptional repression of Survivin, CDC25C, and PLK1 genes requires the cyclin-dependent kinase inhibitor p21/CDKN1A and CDE/CHR promoter sites binding the DREAM complex.
    Fischer M; Quaas M; Nickel A; Engeland K
    Oncotarget; 2015 Dec; 6(39):41402-17. PubMed ID: 26595675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pro-death role of Cited2 in stroke is regulated by E2F1/4 transcription factors.
    Huang T; González YR; Qu D; Huang E; Safarpour F; Wang E; Joselin A; Im DS; Callaghan SM; Boonying W; Julian L; Dunwoodie SL; Slack RS; Park DS
    J Biol Chem; 2019 May; 294(21):8617-8629. PubMed ID: 30967472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.