BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33166539)

  • 1. Unorthodox Mechanisms to Initiate Translation Open Novel Paths for Gene Expression.
    Hernández G; García A; Sonenberg N; Lasko P
    J Mol Biol; 2020 Dec; 432(24):166702. PubMed ID: 33166539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human eukaryotic initiation factor 4G directly binds the 40S ribosomal subunit to promote efficient translation.
    Villa N; Fraser CS
    J Biol Chem; 2024 May; 300(5):107242. PubMed ID: 38569933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel eIF4E-interacting protein that forms non-canonical translation initiation complexes.
    Toribio R; Muñoz A; Castro-Sanz AB; Merchante C; Castellano MM
    Nat Plants; 2019 Dec; 5(12):1283-1296. PubMed ID: 31819221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation.
    Moura DM; Reis CR; Xavier CC; da Costa Lima TD; Lima RP; Carrington M; de Melo Neto OP
    RNA Biol; 2015; 12(3):305-19. PubMed ID: 25826663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human eukaryotic initiation factor 4G (eIF4G) protein binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome.
    Villa N; Do A; Hershey JW; Fraser CS
    J Biol Chem; 2013 Nov; 288(46):32932-40. PubMed ID: 24092755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new translational regulator with homology to eukaryotic translation initiation factor 4G.
    Imataka H; Olsen HS; Sonenberg N
    EMBO J; 1997 Feb; 16(4):817-25. PubMed ID: 9049310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-tethering assay and eIF4G:eIF4A obligate dimer design uncovers multiple eIF4F functional complexes.
    Robert F; Cencic R; Cai R; Schmeing TM; Pelletier J
    Nucleic Acids Res; 2020 Sep; 48(15):8562-8575. PubMed ID: 32749456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Structures of eIF4E-eIF4G Complexes Reveal an Extended Interface to Regulate Translation Initiation.
    Grüner S; Peter D; Weber R; Wohlbold L; Chung MY; Weichenrieder O; Valkov E; Igreja C; Izaurralde E
    Mol Cell; 2016 Nov; 64(3):467-479. PubMed ID: 27773676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E.
    Gross JD; Moerke NJ; von der Haar T; Lugovskoy AA; Sachs AB; McCarthy JE; Wagner G
    Cell; 2003 Dec; 115(6):739-50. PubMed ID: 14675538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective 40S Footprinting Reveals Cap-Tethered Ribosome Scanning in Human Cells.
    Bohlen J; Fenzl K; Kramer G; Bukau B; Teleman AA
    Mol Cell; 2020 Aug; 79(4):561-574.e5. PubMed ID: 32589966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eukaryotic Initiation Factor eIFiso4G1 and eIFiso4G2 Are Isoforms Exhibiting Distinct Functional Differences in Supporting Translation in Arabidopsis.
    Gallie DR
    J Biol Chem; 2016 Jan; 291(3):1501-13. PubMed ID: 26578519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast.
    Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH
    Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Mitogen-activated Protein Kinase (MAPK)-interacting Kinase (MNK) Preferentially Affects Translation of mRNAs Containing Both a 5'-Terminal Cap and Hairpin.
    Korneeva NL; Song A; Gram H; Edens MA; Rhoads RE
    J Biol Chem; 2016 Feb; 291(7):3455-67. PubMed ID: 26668315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery and characterization of conserved binding of eIF4E 1 (CBE1), a eukaryotic translation initiation factor 4E-binding plant protein.
    Patrick RM; Lee JCH; Teetsel JRJ; Yang SH; Choy GS; Browning KS
    J Biol Chem; 2018 Nov; 293(44):17240-17247. PubMed ID: 30213859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eukaryotic translation initiation factor 4G (eIF4G) coordinates interactions with eIF4A, eIF4B, and eIF4E in binding and translation of the barley yellow dwarf virus 3' cap-independent translation element (BTE).
    Zhao P; Liu Q; Miller WA; Goss DJ
    J Biol Chem; 2017 Apr; 292(14):5921-5931. PubMed ID: 28242763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation.
    Liu Y; Cui J; Hoffman AR; Hu JF
    Cell Prolif; 2023 Mar; 56(3):e13367. PubMed ID: 36547008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The translation of capped mRNAs has an absolute requirement for the central domain of eIF4G but not for the cap-binding initiation factor eIF4E.
    Ali IK; Jackson RJ
    Cold Spring Harb Symp Quant Biol; 2001; 66():377-87. PubMed ID: 12762040
    [No Abstract]   [Full Text] [Related]  

  • 18. Activation of a GPCR leads to eIF4G phosphorylation at the 5' cap and to IRES-dependent translation.
    León K; Boulo T; Musnier A; Morales J; Gauthier C; Dupuy L; Heyne S; Backofen R; Poupon A; Cormier P; Reiter E; Crepieux P
    J Mol Endocrinol; 2014 Jun; 52(3):373-82. PubMed ID: 24711644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes.
    Miyakawa S; Oguro A; Ohtsu T; Imataka H; Sonenberg N; Nakamura Y
    RNA; 2006 Oct; 12(10):1825-34. PubMed ID: 16940549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a 57S translation complex containing closed-loop factors and the 60S ribosome subunit.
    Denis CL; Laue TM; Wang X
    Sci Rep; 2018 Jul; 8(1):11468. PubMed ID: 30065356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.