These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33166906)

  • 21. Multi-finger synergies and the muscular apparatus of the hand.
    Cuadra C; Bartsch A; Tiemann P; Reschechtko S; Latash ML
    Exp Brain Res; 2018 May; 236(5):1383-1393. PubMed ID: 29532100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stability of hand force production. I. Hand level control variables and multifinger synergies.
    Reschechtko S; Latash ML
    J Neurophysiol; 2017 Dec; 118(6):3152-3164. PubMed ID: 28904102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The nature of constant and cyclic force production: unintentional force-drift characteristics.
    Ambike S; Mattos D; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2016 Jan; 234(1):197-208. PubMed ID: 26419663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Nature of Finger Enslaving: New Results and Their Implications.
    Abolins V; Latash ML
    Motor Control; 2021 Sep; 25(4):680-703. PubMed ID: 34530403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the Concept of Iso-perceptual Manifold (IPM): A Study of Finger Force-Matching Tasks.
    Cuadra C; Latash ML
    Neuroscience; 2019 Mar; 401():130-141. PubMed ID: 30673586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Processes underlying unintentional finger-force changes in the absence of visual feedback.
    Ambike S; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2015 Mar; 233(3):711-21. PubMed ID: 25417192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Case Studies in Neuroscience: The central and somatosensory contributions to finger interdependence and coordination: lessons from a study of a "deafferented person".
    Cuadra C; Falaki A; Sainburg R; Sarlegna FR; Latash ML
    J Neurophysiol; 2019 Jun; 121(6):2083-2087. PubMed ID: 30969884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of steady hand force production explored across spaces and methods of analysis.
    de Freitas PB; Freitas SMSF; Lewis MM; Huang X; Latash ML
    Exp Brain Res; 2018 Jun; 236(6):1545-1562. PubMed ID: 29564506
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability of hand force production. II. Ascending and descending synergies.
    Reschechtko S; Latash ML
    J Neurophysiol; 2018 Sep; 120(3):1045-1060. PubMed ID: 29873618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Perceptual and Motor Effects of Muscle Co-activation in a Force Production Task.
    Cuadra C; Wojnicz W; Kozinc Z; Latash ML
    Neuroscience; 2020 Jun; 437():34-44. PubMed ID: 32335217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of enslaving on perception of finger forces.
    Li S; Leonard CT
    Exp Brain Res; 2006 Jul; 172(3):301-9. PubMed ID: 16418845
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unsteady steady-states: central causes of unintentional force drift.
    Ambike S; Mattos D; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2016 Dec; 234(12):3597-3611. PubMed ID: 27540726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of sub-maximal force production in the enslaving phenomenon.
    Slobounov S; Johnston J; Chiang H; Ray W
    Brain Res; 2002 Nov; 954(2):212-9. PubMed ID: 12414104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of finger force direction in the flexion-extension plane.
    Gao F; Latash ML; Zatsiorsky VM
    Exp Brain Res; 2005 Mar; 161(3):307-15. PubMed ID: 15726342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. What do people match when they try to match force? Analysis at the level of hypothetical control variables.
    Abolins V; Cuadra C; Ricotta J; Latash ML
    Exp Brain Res; 2020 Sep; 238(9):1885-1901. PubMed ID: 32537705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coordinated force production in multi-finger tasks: finger interaction and neural network modeling.
    Zatsiorsky VM; Li ZM; Latash ML
    Biol Cybern; 1998 Aug; 79(2):139-50. PubMed ID: 9791934
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Force illusions and drifts observed during muscle vibration.
    Reschechtko S; Cuadra C; Latash ML
    J Neurophysiol; 2018 Jan; 119(1):326-336. PubMed ID: 28978768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulated cortical control of individual fingers in experienced musicians: an EEG study. Electroencephalographic study.
    Slobounov S; Chiang H; Johnston J; Ray W
    Clin Neurophysiol; 2002 Dec; 113(12):2013-24. PubMed ID: 12464342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of muscle vibration on multi-finger interaction and coordination.
    Arpinar-Avsar P; Park J; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2013 Aug; 229(1):103-11. PubMed ID: 23736524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finger interaction during multi-finger tasks involving finger addition and removal.
    Li S; Latash ML; Zatsiorsky VM
    Exp Brain Res; 2003 May; 150(2):230-6. PubMed ID: 12669172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.